Let $R$ be a commutative ring with nonzero identity and let $M$ be a unitary $R$-module.
The essential graph of $M$, denoted by $EG(M)$ is a simple undirected graph
whose vertex set is $Z(M)\setminus {\rm Ann}_R(M)$ and
two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm Ann}_{M}(xy)$ is an
essential submodule of $M$.
Let $r({\rm Ann}_R(M))\not={\rm Ann}_R(M)$.
It is shown that $EG(M)$ is a connected graph with
${\rm diam}(EG(M))\leq 2$.
Whenever $M$ is Noetherian, it is shown that
$EG(M)$ is a complete graph if and only if either
$Z(M)=r({\rm Ann}_R(M))$ or $EG(M)=K_{2}$ and
${\rm diam}(EG(M))= 2$ if and only if there are
$x, y\in Z(M)\setminus {\rm Ann}_R(M)$ and $\frak p\in{\rm Ass}_R(M)$ such that
$xy\not \in \frak p$. Moreover, it is proved that ${\rm gr}(EG(M))\in \{3, \infty\}$.
Furthermore, for a Noetherian module $M$ with
$r({\rm Ann}_R(M))={\rm Ann}_R(M)$ it is proved that $|{\rm Ass}_R(M)|=2$
if and only if $EG(M)$ is a complete bipartite graph that is not a star.
S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative
ring, J. Algebra, 274 (2004), 847-855.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra, 217(2) (1999), 434-447.
D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor
graph, J. Pure Appl. Algebra, 210(2) (2007), 543-550.
D. F. Anderson and D. Weber, The zero-divisor graph of a commutative ring
without identity, Int. Electron. J. Algebra, 23 (2018), 176-202.
S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules
and the annihilator essential graph, Acta Math. Vietnam., 44 (2019), 905-914.
I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4(2) (2012), 175-197.
S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules,
Honam Math. J., 34(4) (2012), 571-584.
C. P. Lu, Unions of prime submodules, Houston J. Math., 23(2) (1997), 203-213.
M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, On the essential graph of a
commutative ring, J. Algebra Appl., 16(7) (2017), 1750132 (14 pp).
K. Nozari and Sh. Payrovi, A generalization of zero-divisor graph for modules,
Publ. Inst. Math. (Beograd) (N.S.), 106(120) (2019), 39-46.
S. Safaeeyan, M. Baziar and E. Momtahan, A generalization of the zero-divisor
graph for modules, J. Korean Math. Soc., 51(1) (2014), 87-98.
R. Y. Sharp, Steps in Commutative Algebra, Second edition, Cambridge University Press, Cambridge, 2000.
Year 2021,
Volume: 29 Issue: 29, 211 - 222, 05.01.2021
S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative
ring, J. Algebra, 274 (2004), 847-855.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra, 217(2) (1999), 434-447.
D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor
graph, J. Pure Appl. Algebra, 210(2) (2007), 543-550.
D. F. Anderson and D. Weber, The zero-divisor graph of a commutative ring
without identity, Int. Electron. J. Algebra, 23 (2018), 176-202.
S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules
and the annihilator essential graph, Acta Math. Vietnam., 44 (2019), 905-914.
I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4(2) (2012), 175-197.
S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules,
Honam Math. J., 34(4) (2012), 571-584.
C. P. Lu, Unions of prime submodules, Houston J. Math., 23(2) (1997), 203-213.
M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, On the essential graph of a
commutative ring, J. Algebra Appl., 16(7) (2017), 1750132 (14 pp).
K. Nozari and Sh. Payrovi, A generalization of zero-divisor graph for modules,
Publ. Inst. Math. (Beograd) (N.S.), 106(120) (2019), 39-46.
S. Safaeeyan, M. Baziar and E. Momtahan, A generalization of the zero-divisor
graph for modules, J. Korean Math. Soc., 51(1) (2014), 87-98.
R. Y. Sharp, Steps in Commutative Algebra, Second edition, Cambridge University Press, Cambridge, 2000.
Soheılnıa, F., Payrovı, S., & Behtoeı, A. (2021). A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra, 29(29), 211-222. https://doi.org/10.24330/ieja.852234
AMA
Soheılnıa F, Payrovı S, Behtoeı A. A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS. IEJA. January 2021;29(29):211-222. doi:10.24330/ieja.852234
Chicago
Soheılnıa, F., Sh. Payrovı, and A. Behtoeı. “A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 29, no. 29 (January 2021): 211-22. https://doi.org/10.24330/ieja.852234.
EndNote
Soheılnıa F, Payrovı S, Behtoeı A (January 1, 2021) A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra 29 29 211–222.
IEEE
F. Soheılnıa, S. Payrovı, and A. Behtoeı, “A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS”, IEJA, vol. 29, no. 29, pp. 211–222, 2021, doi: 10.24330/ieja.852234.
ISNAD
Soheılnıa, F. et al. “A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 29/29 (January 2021), 211-222. https://doi.org/10.24330/ieja.852234.
JAMA
Soheılnıa F, Payrovı S, Behtoeı A. A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS. IEJA. 2021;29:211–222.
MLA
Soheılnıa, F. et al. “A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra, vol. 29, no. 29, 2021, pp. 211-22, doi:10.24330/ieja.852234.
Vancouver
Soheılnıa F, Payrovı S, Behtoeı A. A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS. IEJA. 2021;29(29):211-22.