Research Article
BibTex RIS Cite

SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS

Year 2021, Volume: 30 Issue: 30, 99 - 115, 17.07.2021
https://doi.org/10.24330/ieja.969592

Abstract

Let $\star$ be a star operation on a ring extension $R\subseteq S$. A ring extension $R\subseteq S$ is called
Pr\"ufer $star$-multiplication extension (P$\star$ME) if $(R_{[\m]}, \m _{[\m]})$ is a Manis pair in $S$ for
every $\star$-maximal ideal $\m$ of $R$. We establish some results on star operations, and we study P$\star$ME
in pullback diagrams of type $\square$. We show that, for a
maximal ideal $\m$ of $R$, the extension $R_{[\m]} \subseteq S$ is
Manis if and only if $R[X]_{[\m R[X]]} \subseteq S[X]$ is a Manis
extension.

References

  • M. Fontana and M. Zafrullah, On $v$-domains: a survey. Commutative algebra–Noetherian and non-Noetherian perspectives, 145-179, Springer, New York, 2011.
  • S. Gabelli and E. Houston, Ideal theory in pullbacks, In: Chapman S. T., Glaz S., eds. Non-Noetherian Commutative Ring Theory, Math. Appl., vol. 520, Kluwer Academic Publishers, Dordrecht (2000), 199-227.
  • R. Gilmer, Multiplicative Ideal Theory, Corrected reprint of the 1972 edition, Queen’s Papers in Pure and Applied Mathematics, 90, Queen’s University, Kingston, ON, 1992.
  • M. Griffin, Some results on $v$-multiplication rings, Canadian J. Math., 19 (1967), 710-722.
  • E. G. Houston, S. B. Malik and J. Mott, Characterizations of $\star$-multiplication domains, Canadian Math. Bull., 27(1) (1984), 48-52.
  • B. G. Kang, Prüfer $v$-multiplicative domains and the ring RrXsNv , J. Algebra, 123 (1989), 151-170.
  • M. Knebusch and D. Zhang, Manis Valuations and Prüfer Extensions. I, Lecture Notes in Mathematics, 1791, Springer-Verlag, Berlin, 2002.
  • M. Knebusch and T. Kaiser, Manis Valuations and Prüfer Extensions II, Lectures Notes in Mathematics, 2103, Springer, Cham, 2014.
  • L. Paudel and S. Tchamna, Pullback diagrams and Kronecker function rings, Rocky Mountain J. Math., 49(7)(2019), 2267-2279.
  • L. Paudel and S. Tchamna, A study of linked star operations, to appear in Bull. Korean Math. Soc.
  • S. Tchamna, Multiplicative canonical ideals of ring extension, J. Algebra Appl., 16(4) (2017), 1750069 (15 pp).
  • S. Tchamna, On ring extensions satisfying the star-hash property, Comm. Algebra, 48(5) (2020), 2081-2091.
Year 2021, Volume: 30 Issue: 30, 99 - 115, 17.07.2021
https://doi.org/10.24330/ieja.969592

Abstract

References

  • M. Fontana and M. Zafrullah, On $v$-domains: a survey. Commutative algebra–Noetherian and non-Noetherian perspectives, 145-179, Springer, New York, 2011.
  • S. Gabelli and E. Houston, Ideal theory in pullbacks, In: Chapman S. T., Glaz S., eds. Non-Noetherian Commutative Ring Theory, Math. Appl., vol. 520, Kluwer Academic Publishers, Dordrecht (2000), 199-227.
  • R. Gilmer, Multiplicative Ideal Theory, Corrected reprint of the 1972 edition, Queen’s Papers in Pure and Applied Mathematics, 90, Queen’s University, Kingston, ON, 1992.
  • M. Griffin, Some results on $v$-multiplication rings, Canadian J. Math., 19 (1967), 710-722.
  • E. G. Houston, S. B. Malik and J. Mott, Characterizations of $\star$-multiplication domains, Canadian Math. Bull., 27(1) (1984), 48-52.
  • B. G. Kang, Prüfer $v$-multiplicative domains and the ring RrXsNv , J. Algebra, 123 (1989), 151-170.
  • M. Knebusch and D. Zhang, Manis Valuations and Prüfer Extensions. I, Lecture Notes in Mathematics, 1791, Springer-Verlag, Berlin, 2002.
  • M. Knebusch and T. Kaiser, Manis Valuations and Prüfer Extensions II, Lectures Notes in Mathematics, 2103, Springer, Cham, 2014.
  • L. Paudel and S. Tchamna, Pullback diagrams and Kronecker function rings, Rocky Mountain J. Math., 49(7)(2019), 2267-2279.
  • L. Paudel and S. Tchamna, A study of linked star operations, to appear in Bull. Korean Math. Soc.
  • S. Tchamna, Multiplicative canonical ideals of ring extension, J. Algebra Appl., 16(4) (2017), 1750069 (15 pp).
  • S. Tchamna, On ring extensions satisfying the star-hash property, Comm. Algebra, 48(5) (2020), 2081-2091.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Lokendra Paudel This is me

Simplice Tchamna This is me

Publication Date July 17, 2021
Published in Issue Year 2021 Volume: 30 Issue: 30

Cite

APA Paudel, L., & Tchamna, S. (2021). SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS. International Electronic Journal of Algebra, 30(30), 99-115. https://doi.org/10.24330/ieja.969592
AMA Paudel L, Tchamna S. SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS. IEJA. July 2021;30(30):99-115. doi:10.24330/ieja.969592
Chicago Paudel, Lokendra, and Simplice Tchamna. “SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS”. International Electronic Journal of Algebra 30, no. 30 (July 2021): 99-115. https://doi.org/10.24330/ieja.969592.
EndNote Paudel L, Tchamna S (July 1, 2021) SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS. International Electronic Journal of Algebra 30 30 99–115.
IEEE L. Paudel and S. Tchamna, “SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS”, IEJA, vol. 30, no. 30, pp. 99–115, 2021, doi: 10.24330/ieja.969592.
ISNAD Paudel, Lokendra - Tchamna, Simplice. “SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS”. International Electronic Journal of Algebra 30/30 (July 2021), 99-115. https://doi.org/10.24330/ieja.969592.
JAMA Paudel L, Tchamna S. SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS. IEJA. 2021;30:99–115.
MLA Paudel, Lokendra and Simplice Tchamna. “SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS”. International Electronic Journal of Algebra, vol. 30, no. 30, 2021, pp. 99-115, doi:10.24330/ieja.969592.
Vancouver Paudel L, Tchamna S. SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS. IEJA. 2021;30(30):99-115.

Cited By


A note on maximal non-Manis extensions
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-021-00614-y