Research Article
BibTex RIS Cite
Year 2021, Volume: 30 Issue: 30, 203 - 216, 17.07.2021
https://doi.org/10.24330/ieja.969902

Abstract

References

  • G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math., 312(17) (2012), 2620-2626.
  • G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math., 43(5) (2013), 1415-1425.
  • G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq., 21(2) (2014), 249-256.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
  • H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci., 25(3) (2007), 447-455.
  • H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra, 42(8) (2014), 3283-3296.
  • H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings II, Arab. J. Math., 5(4) (2016), 187-194.
  • H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings, Math. Rep. (Bucur.), 20(70)(3) (2018), 245-262.
  • H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings II, Arab. J. Math., 10(1) (2021), 41-50.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
  • R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer-Verlag, New York, 2000.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
  • M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10(4) (2011), 727-739.
  • R. Diestel, Graph Theory, Third edition, Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005.
  • T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs Advanced Topics: Volume 2: Advanced Topics (1st ed.), Routledge, 1998.
  • T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul., 33(1) (1984), 61-69.
  • D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commutative rings, Comm. Algebra, 40(9) (2012), 3389-3396.
  • R. Nikandish, H. R. Maimani and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. Inst. Math. (Beograd) (N.S.), 97(111) (2015), 225-231.
  • R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 19, Cambridge University Press, Cambridge, 1990.
  • T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput., 88 (2014) 277-288.

DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS

Year 2021, Volume: 30 Issue: 30, 203 - 216, 17.07.2021
https://doi.org/10.24330/ieja.969902

Abstract

Let $M$ be a module over a commutative ring $R$. The
annihilating-submodule graph of $M$, denoted by $AG(M)$, is a
simple undirected graph in which a non-zero submodule $N$ of $M$
is a vertex if and only if there exists a non-zero proper
submodule $K$ of $M$ such that $NK=(0)$, where $NK$, the product
of $N$ and $K$, is denoted by $(N:M)(K:M)M$ and two distinct
vertices $N$ and $K$ are adjacent if and only if $NK=(0)$. This
graph is a submodule version of the annihilating-ideal graph and
under some conditions, is isomorphic with an induced subgraph of
the Zariski topology-graph $G(\tau_T)$ which was introduced in [H.
Ansari-Toroghy and S. Habibi, Comm. Algebra, 42(2014), 3283-3296].
In this paper, we study the domination number of $AG(M)$ and some
connections between the graph-theoretic properties of $AG(M)$ and
algebraic properties of module $M$.

References

  • G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math., 312(17) (2012), 2620-2626.
  • G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math., 43(5) (2013), 1415-1425.
  • G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq., 21(2) (2014), 249-256.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
  • H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci., 25(3) (2007), 447-455.
  • H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra, 42(8) (2014), 3283-3296.
  • H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings II, Arab. J. Math., 5(4) (2016), 187-194.
  • H. Ansari-Toroghy and S. Habibi, The annihilating-submodule graph of modules over commutative rings, Math. Rep. (Bucur.), 20(70)(3) (2018), 245-262.
  • H. Ansari-Toroghy and S. Habibi, The Zariski topology-graph of modules over commutative rings II, Arab. J. Math., 10(1) (2021), 41-50.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
  • R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer-Verlag, New York, 2000.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
  • M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10(4) (2011), 727-739.
  • R. Diestel, Graph Theory, Third edition, Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005.
  • T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs Advanced Topics: Volume 2: Advanced Topics (1st ed.), Routledge, 1998.
  • T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul., 33(1) (1984), 61-69.
  • D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commutative rings, Comm. Algebra, 40(9) (2012), 3389-3396.
  • R. Nikandish, H. R. Maimani and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. Inst. Math. (Beograd) (N.S.), 97(111) (2015), 225-231.
  • R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 19, Cambridge University Press, Cambridge, 1990.
  • T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput., 88 (2014) 277-288.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Habibollah Ansarı-toroghy This is me

Shokoufeh Habıbı This is me

Publication Date July 17, 2021
Published in Issue Year 2021 Volume: 30 Issue: 30

Cite

APA Ansarı-toroghy, H., & Habıbı, S. (2021). DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra, 30(30), 203-216. https://doi.org/10.24330/ieja.969902
AMA Ansarı-toroghy H, Habıbı S. DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS. IEJA. July 2021;30(30):203-216. doi:10.24330/ieja.969902
Chicago Ansarı-toroghy, Habibollah, and Shokoufeh Habıbı. “DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 30, no. 30 (July 2021): 203-16. https://doi.org/10.24330/ieja.969902.
EndNote Ansarı-toroghy H, Habıbı S (July 1, 2021) DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS. International Electronic Journal of Algebra 30 30 203–216.
IEEE H. Ansarı-toroghy and S. Habıbı, “DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS”, IEJA, vol. 30, no. 30, pp. 203–216, 2021, doi: 10.24330/ieja.969902.
ISNAD Ansarı-toroghy, Habibollah - Habıbı, Shokoufeh. “DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra 30/30 (July 2021), 203-216. https://doi.org/10.24330/ieja.969902.
JAMA Ansarı-toroghy H, Habıbı S. DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS. IEJA. 2021;30:203–216.
MLA Ansarı-toroghy, Habibollah and Shokoufeh Habıbı. “DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS”. International Electronic Journal of Algebra, vol. 30, no. 30, 2021, pp. 203-16, doi:10.24330/ieja.969902.
Vancouver Ansarı-toroghy H, Habıbı S. DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS. IEJA. 2021;30(30):203-16.