Research Article
BibTex RIS Cite

SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION

Year 2021, Volume: 30 Issue: 30, 304 - 311, 17.07.2021
https://doi.org/10.24330/ieja.969942

Abstract

In this paper, some characterizations of partial isometries, normal elements and strongly $EP$ elements are given by the construction of $EP$ elements. At the same time, the partial isometry elements are characterized by the existence of solutions of equations in rings in a given set, and also by the general form of solutions of given equations.

References

  • A. Ben-Israel and T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer, New York, 2003.
  • S. Karanasios, EP elements in rings and semigroup with involution and $C^*$-algebras, Serdica Math. J., 41 (2015), 83-116.
  • J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72 (2002), 137-152.
  • D. Mosic and D. S. Djordjevic, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra, 18 (2009), 761-772.
  • D. Mosic and D. S. Djordjevic, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling, 54 (2011), 460- 465.
  • D. Mosic, D. S. Djordjevic and J. J. Koliha, EP elements in rings, Linear Algebra Appl., 431 (2009), 527-535.
  • Y. C. Qu, J. C. Wei and H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar., 156(2) (2018), 459-464.
  • Z. C. Xu, R. J. Tang and J. C. Wei, Strongly EP elements in a ring with involution, Filomat, 34(6) (2020), 2101-2107.
  • S. Z. Xu, J. L. Chen and J. Benítez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc., 42 (2019), 3409-3426.
  • R. J. Zhao, H. Yao and J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements, Czechoslovak Math. J., 70(145) (2020), 539- 551.
  • R. J. Zhao, H. Yao and J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat, 32(13) (2018), 4537-4542.
Year 2021, Volume: 30 Issue: 30, 304 - 311, 17.07.2021
https://doi.org/10.24330/ieja.969942

Abstract

References

  • A. Ben-Israel and T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer, New York, 2003.
  • S. Karanasios, EP elements in rings and semigroup with involution and $C^*$-algebras, Serdica Math. J., 41 (2015), 83-116.
  • J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72 (2002), 137-152.
  • D. Mosic and D. S. Djordjevic, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra, 18 (2009), 761-772.
  • D. Mosic and D. S. Djordjevic, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling, 54 (2011), 460- 465.
  • D. Mosic, D. S. Djordjevic and J. J. Koliha, EP elements in rings, Linear Algebra Appl., 431 (2009), 527-535.
  • Y. C. Qu, J. C. Wei and H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar., 156(2) (2018), 459-464.
  • Z. C. Xu, R. J. Tang and J. C. Wei, Strongly EP elements in a ring with involution, Filomat, 34(6) (2020), 2101-2107.
  • S. Z. Xu, J. L. Chen and J. Benítez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc., 42 (2019), 3409-3426.
  • R. J. Zhao, H. Yao and J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements, Czechoslovak Math. J., 70(145) (2020), 539- 551.
  • R. J. Zhao, H. Yao and J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat, 32(13) (2018), 4537-4542.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Dandan Zhao This is me

Junchao Weı This is me

Publication Date July 17, 2021
Published in Issue Year 2021 Volume: 30 Issue: 30

Cite

APA Zhao, D., & Weı, J. (2021). SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION. International Electronic Journal of Algebra, 30(30), 304-311. https://doi.org/10.24330/ieja.969942
AMA Zhao D, Weı J. SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION. IEJA. July 2021;30(30):304-311. doi:10.24330/ieja.969942
Chicago Zhao, Dandan, and Junchao Weı. “SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION”. International Electronic Journal of Algebra 30, no. 30 (July 2021): 304-11. https://doi.org/10.24330/ieja.969942.
EndNote Zhao D, Weı J (July 1, 2021) SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION. International Electronic Journal of Algebra 30 30 304–311.
IEEE D. Zhao and J. Weı, “SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION”, IEJA, vol. 30, no. 30, pp. 304–311, 2021, doi: 10.24330/ieja.969942.
ISNAD Zhao, Dandan - Weı, Junchao. “SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION”. International Electronic Journal of Algebra 30/30 (July 2021), 304-311. https://doi.org/10.24330/ieja.969942.
JAMA Zhao D, Weı J. SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION. IEJA. 2021;30:304–311.
MLA Zhao, Dandan and Junchao Weı. “SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION”. International Electronic Journal of Algebra, vol. 30, no. 30, 2021, pp. 304-11, doi:10.24330/ieja.969942.
Vancouver Zhao D, Weı J. SOME NEW CHARACTERIZATIONS OF PARTIAL ISOMETRIES IN RINGS WITH INVOLUTION. IEJA. 2021;30(30):304-11.