Research Article
BibTex RIS Cite

On lattices associated to rings with respect to a preradical

Year 2022, Volume: 31 Issue: 31, 13 - 37, 17.01.2022
https://doi.org/10.24330/ieja.1058385

Abstract

We introduce some new lattices of classes of modules with respect to appropriate preradicals. We introduce some concepts associated with these
lattices, such as the $\sigma$-semiartinian rings, the $\sigma$-retractable modules, the $\sigma$-$V$-rings, the $\sigma$-max rings. We continue to study $\sigma$-torsion theories, $\sigma$-open classes, $\sigma$-stable classes. We prove some theorems that extend some known results. Our results fall into well known situations when the preradical $\sigma$ is chosen as the identity preradical.

References

  • A. Alvarado-Garcia, H. Rincon-Mejia and J. Rios-Montes, On the lattices of natural and conatural classes in R-Mod, Comm. Algebra, 29(2) (2001), 541-556.
  • A. Alvarado-Garcia, H. Rincon-Mejia and J. Rios-Montes, On some lattices of module classes, J. Algebra Appl., 5 (1) (2006), 105-117.
  • A. Alvarado-Garcia, H. Rincon-Mejia, J. Rios-Montes and B. Tome-Arreola, On conatural classes and cotype submodules, Int. Electron. J. Algebra, 11 (2012), 64-81.
  • A. Alvarado-Garcia, C. Cejudo-Castilla, H. Rincon-Mejia, F. Vilchis-Montalvo and M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq., 25(2) (2018), 285-294.
  • L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Marcel Dekker, Inc., New York, 1982.
  • E. Cerda-Leon and H. Rincon-Mejia, Big lattices of module classes induced by preradicals, Sao Paulo J. Math. Sci., 14 (2020), 185-206.
  • J. Dauns and Y. Zhou, Classes of Modules, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223-235.
  • J. Golan, Torsion Theories, Longman Scientific & Technical, New York, 1986.
  • T. Kosan and M. J. Zemlicka, Mod-retractable rings, Comm. Algebra, 42 (2014), 998-1010.
  • F. Raggi, J. Rios, H. Rincon-Mejia, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533-1544.
  • H. Rincon-Mejia and M. Zorrilla-Noriega, On some relations between the lattices R-nat, R-conat and R-tors and the rings they characterize, J. Algebra Appl., 12(5) (2013), 1250214, 13 pp.
  • P. F. Smith, Modules with many homomorphisms, J. Pure Appl. Algebra, 197 (2005), 305-321.
  • B. Stenstrom, Rings of Quotients, Springer-Verlag, New York Heidelberg, 1975.
Year 2022, Volume: 31 Issue: 31, 13 - 37, 17.01.2022
https://doi.org/10.24330/ieja.1058385

Abstract

References

  • A. Alvarado-Garcia, H. Rincon-Mejia and J. Rios-Montes, On the lattices of natural and conatural classes in R-Mod, Comm. Algebra, 29(2) (2001), 541-556.
  • A. Alvarado-Garcia, H. Rincon-Mejia and J. Rios-Montes, On some lattices of module classes, J. Algebra Appl., 5 (1) (2006), 105-117.
  • A. Alvarado-Garcia, H. Rincon-Mejia, J. Rios-Montes and B. Tome-Arreola, On conatural classes and cotype submodules, Int. Electron. J. Algebra, 11 (2012), 64-81.
  • A. Alvarado-Garcia, C. Cejudo-Castilla, H. Rincon-Mejia, F. Vilchis-Montalvo and M. Zorrilla-Noriega, On boolean lattices of module classes, Algebra Colloq., 25(2) (2018), 285-294.
  • L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Marcel Dekker, Inc., New York, 1982.
  • E. Cerda-Leon and H. Rincon-Mejia, Big lattices of module classes induced by preradicals, Sao Paulo J. Math. Sci., 14 (2020), 185-206.
  • J. Dauns and Y. Zhou, Classes of Modules, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223-235.
  • J. Golan, Torsion Theories, Longman Scientific & Technical, New York, 1986.
  • T. Kosan and M. J. Zemlicka, Mod-retractable rings, Comm. Algebra, 42 (2014), 998-1010.
  • F. Raggi, J. Rios, H. Rincon-Mejia, R. Fernandez-Alonso and C. Signoret, The lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533-1544.
  • H. Rincon-Mejia and M. Zorrilla-Noriega, On some relations between the lattices R-nat, R-conat and R-tors and the rings they characterize, J. Algebra Appl., 12(5) (2013), 1250214, 13 pp.
  • P. F. Smith, Modules with many homomorphisms, J. Pure Appl. Algebra, 197 (2005), 305-321.
  • B. Stenstrom, Rings of Quotients, Springer-Verlag, New York Heidelberg, 1975.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Erwin Cerda-leon This is me

Hugo Rıncon-mejıa This is me

Publication Date January 17, 2022
Published in Issue Year 2022 Volume: 31 Issue: 31

Cite

APA Cerda-leon, E., & Rıncon-mejıa, H. (2022). On lattices associated to rings with respect to a preradical. International Electronic Journal of Algebra, 31(31), 13-37. https://doi.org/10.24330/ieja.1058385
AMA Cerda-leon E, Rıncon-mejıa H. On lattices associated to rings with respect to a preradical. IEJA. January 2022;31(31):13-37. doi:10.24330/ieja.1058385
Chicago Cerda-leon, Erwin, and Hugo Rıncon-mejıa. “On Lattices Associated to Rings With Respect to a Preradical”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 13-37. https://doi.org/10.24330/ieja.1058385.
EndNote Cerda-leon E, Rıncon-mejıa H (January 1, 2022) On lattices associated to rings with respect to a preradical. International Electronic Journal of Algebra 31 31 13–37.
IEEE E. Cerda-leon and H. Rıncon-mejıa, “On lattices associated to rings with respect to a preradical”, IEJA, vol. 31, no. 31, pp. 13–37, 2022, doi: 10.24330/ieja.1058385.
ISNAD Cerda-leon, Erwin - Rıncon-mejıa, Hugo. “On Lattices Associated to Rings With Respect to a Preradical”. International Electronic Journal of Algebra 31/31 (January 2022), 13-37. https://doi.org/10.24330/ieja.1058385.
JAMA Cerda-leon E, Rıncon-mejıa H. On lattices associated to rings with respect to a preradical. IEJA. 2022;31:13–37.
MLA Cerda-leon, Erwin and Hugo Rıncon-mejıa. “On Lattices Associated to Rings With Respect to a Preradical”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 13-37, doi:10.24330/ieja.1058385.
Vancouver Cerda-leon E, Rıncon-mejıa H. On lattices associated to rings with respect to a preradical. IEJA. 2022;31(31):13-37.