We show that the quartic Diophantine equations $ax^4+by^4=cz^2$ has only trivial solution in the Gaussian integers
for some particular choices of $a,b$ and $c$. Our strategy is by elliptic curves method. In fact, we exhibit
two null-rank corresponding families of elliptic curves over Gaussian field. We also determine the torsion groups of both families.
A. Bremner and J. W. S. Cassels, On the equation $y^2 = X(X^2+p)$, Math.
Comp., 42 (165) (1984), 257-264.
H. Cohen, Number theory. Volume I: Tools and Diophantine equations,
Springer, 2007.
D. Hilbert, Die Theorie der algebraischen Zahlkorper, Jahresbericht der
Deutschen Mathematiker-Vereinigung, 4 (1894/95), 175-535.
F. Izadi, R. F. Naghdali and P. G. Brown, Some quadratic Diophantine equation
in the Gaussian integers, Bull. Aust. Math. Soc., 92 (2) (2015), 187-194.
F. Najman, The Diophantine equation$x^4 \pm y^4 = iz^2$ in Gaussian integers,
Amer. Math. Monthly, 117 (7) (2010), 637-641.
F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math.J.Okayama Univ., 53 (2011), 75-82.
S. Szabo, Some fourth degree Diophantine equations in Gaussian integers, Integers, 4:paper a16, 17, 2004.
J. H. Silverman, The arithmetic of elliptic curves, 2nd edition, Springer, 2009.
J. H. Silverman and J. T. Tate, Rational points on elliptic curves, 2nd edition,
Springer, 2015.
Year 2022,
Volume: 31 Issue: 31, 134 - 142, 17.01.2022
A. Bremner and J. W. S. Cassels, On the equation $y^2 = X(X^2+p)$, Math.
Comp., 42 (165) (1984), 257-264.
H. Cohen, Number theory. Volume I: Tools and Diophantine equations,
Springer, 2007.
D. Hilbert, Die Theorie der algebraischen Zahlkorper, Jahresbericht der
Deutschen Mathematiker-Vereinigung, 4 (1894/95), 175-535.
F. Izadi, R. F. Naghdali and P. G. Brown, Some quadratic Diophantine equation
in the Gaussian integers, Bull. Aust. Math. Soc., 92 (2) (2015), 187-194.
F. Najman, The Diophantine equation$x^4 \pm y^4 = iz^2$ in Gaussian integers,
Amer. Math. Monthly, 117 (7) (2010), 637-641.
F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math.J.Okayama Univ., 53 (2011), 75-82.
S. Szabo, Some fourth degree Diophantine equations in Gaussian integers, Integers, 4:paper a16, 17, 2004.
J. H. Silverman, The arithmetic of elliptic curves, 2nd edition, Springer, 2009.
J. H. Silverman and J. T. Tate, Rational points on elliptic curves, 2nd edition,
Springer, 2015.
Ahmadı, M., & Janfada, A. S. (2022). On quartic Diophantine equations with trivial solutions in the Gaussian integers. International Electronic Journal of Algebra, 31(31), 134-142. https://doi.org/10.24330/ieja.964819
AMA
Ahmadı M, Janfada AS. On quartic Diophantine equations with trivial solutions in the Gaussian integers. IEJA. January 2022;31(31):134-142. doi:10.24330/ieja.964819
Chicago
Ahmadı, Mahnaz, and Ali S. Janfada. “On Quartic Diophantine Equations With Trivial Solutions in the Gaussian Integers”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 134-42. https://doi.org/10.24330/ieja.964819.
EndNote
Ahmadı M, Janfada AS (January 1, 2022) On quartic Diophantine equations with trivial solutions in the Gaussian integers. International Electronic Journal of Algebra 31 31 134–142.
IEEE
M. Ahmadı and A. S. Janfada, “On quartic Diophantine equations with trivial solutions in the Gaussian integers”, IEJA, vol. 31, no. 31, pp. 134–142, 2022, doi: 10.24330/ieja.964819.
ISNAD
Ahmadı, Mahnaz - Janfada, Ali S. “On Quartic Diophantine Equations With Trivial Solutions in the Gaussian Integers”. International Electronic Journal of Algebra 31/31 (January 2022), 134-142. https://doi.org/10.24330/ieja.964819.
JAMA
Ahmadı M, Janfada AS. On quartic Diophantine equations with trivial solutions in the Gaussian integers. IEJA. 2022;31:134–142.
MLA
Ahmadı, Mahnaz and Ali S. Janfada. “On Quartic Diophantine Equations With Trivial Solutions in the Gaussian Integers”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 134-42, doi:10.24330/ieja.964819.
Vancouver
Ahmadı M, Janfada AS. On quartic Diophantine equations with trivial solutions in the Gaussian integers. IEJA. 2022;31(31):134-42.