Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1478925

Abstract

References

  • D. D. Anderson, D. F. Anderson and R. Markanda, The rings $R(X)$ and $R\left\langle X\right\rangle$, J. Algebra, 95(1) (1985), 96-115.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math., 31 (1980), 167-196.
  • J. A. Huckaba and I. J. Papick, A localization of $R[x]$, Canadian J. Math., 33(1) (1981), 103-115.
  • M. Jarrar and S. Kabbaj, Prüfer conditions in the Nagata ring and the Serre's conjecture ring, Comm. Algebra, 46(5) (2018), 2073-2082.
  • I. Kaplansky, Commutative Rings, Revised Edition, University of Chicago Press, Chicago, 1974.
  • L. R. le Riche, The ring $R\left\langle X\right\rangle$, J. Algebra, 67 (1980), 327-341.

The ring $R\{X\}$

Year 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1478925

Abstract

Let $R$ be a commutative ring with unity and $W=\{f(X)\in R[X]:f(0)=1\}$. We define $R\{X\}=W^{-1}R[X]$. We show that the maximal ideals of $R\{X\} $ are of the form $W^{-1}(M,X)$ where $M$ is a maximal ideal of $R$, and so if $R$ is finite dimensional, then $\dim R\{X\}=\dim R[X]$. We show that $R\{X\}$ is a Prüfer ring if and only if $R$ is a von Neumann regular ring, and so if $R\{X\}$ satisfies one of the Prüfer conditions, it satisfies all of them.

References

  • D. D. Anderson, D. F. Anderson and R. Markanda, The rings $R(X)$ and $R\left\langle X\right\rangle$, J. Algebra, 95(1) (1985), 96-115.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math., 31 (1980), 167-196.
  • J. A. Huckaba and I. J. Papick, A localization of $R[x]$, Canadian J. Math., 33(1) (1981), 103-115.
  • M. Jarrar and S. Kabbaj, Prüfer conditions in the Nagata ring and the Serre's conjecture ring, Comm. Algebra, 46(5) (2018), 2073-2082.
  • I. Kaplansky, Commutative Rings, Revised Edition, University of Chicago Press, Chicago, 1974.
  • L. R. le Riche, The ring $R\left\langle X\right\rangle$, J. Algebra, 67 (1980), 327-341.
There are 8 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Emad Abuosba This is me

Mariam Al-azaizeh This is me

Early Pub Date May 5, 2024
Publication Date
Submission Date October 22, 2023
Acceptance Date December 15, 2023
Published in Issue Year 2024 Early Access

Cite

APA Abuosba, E., & Al-azaizeh, M. (2024). The ring $R\{X\}$. International Electronic Journal of Algebra1-8. https://doi.org/10.24330/ieja.1478925
AMA Abuosba E, Al-azaizeh M. The ring $R\{X\}$. IEJA. Published online May 1, 2024:1-8. doi:10.24330/ieja.1478925
Chicago Abuosba, Emad, and Mariam Al-azaizeh. “The Ring $R\{X\}$”. International Electronic Journal of Algebra, May (May 2024), 1-8. https://doi.org/10.24330/ieja.1478925.
EndNote Abuosba E, Al-azaizeh M (May 1, 2024) The ring $R\{X\}$. International Electronic Journal of Algebra 1–8.
IEEE E. Abuosba and M. Al-azaizeh, “The ring $R\{X\}$”, IEJA, pp. 1–8, May 2024, doi: 10.24330/ieja.1478925.
ISNAD Abuosba, Emad - Al-azaizeh, Mariam. “The Ring $R\{X\}$”. International Electronic Journal of Algebra. May 2024. 1-8. https://doi.org/10.24330/ieja.1478925.
JAMA Abuosba E, Al-azaizeh M. The ring $R\{X\}$. IEJA. 2024;:1–8.
MLA Abuosba, Emad and Mariam Al-azaizeh. “The Ring $R\{X\}$”. International Electronic Journal of Algebra, 2024, pp. 1-8, doi:10.24330/ieja.1478925.
Vancouver Abuosba E, Al-azaizeh M. The ring $R\{X\}$. IEJA. 2024:1-8.