Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 7
https://doi.org/10.24330/ieja.1496115

Abstract

References

  • B. DeWitt, Supermanifolds, Second edition, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1992.
  • P. Fayet and S. Ferrara, Supersymmetry, Phys. Rep., 32C(5) (1977), 249-334.
  • G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2), 57 (1953), 591-603.
  • N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1962.
  • N Jacobson, Lie Algebras, Republication of the 1962 original, Dover Publications, New York, 1979.
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, The centralizer of~$\frak{sl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, J. Northeast Normal Univ. (Natural Science Edition), 52(1) (2020), 10-12. (Chinese)
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, Centralizers of~$\frak{sl}(2,1)$ and~$\frak{sl}(1,2)$ in the generalized Witt Lie superalgebra over fields of prime characteristics, Journal of Harbin University of Science and Technology, 26(1) (2021), 144-148. (Chinese)
  • R. Mokhtari, R. Hoseini Sani and A. Chenaghlou, Supersymmetry approach to the Dirac equation in the presence of the deformed Woods-Saxon potential, Eur. Phys. J. Plus, 134 (2019), 446 (7 pp).
  • J. J. Rotman, An Introduction to Homological Algebra, 2nd ed, Universitext, Springer, New York, 2009.
  • M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979.
  • M. Scheunert and R. B. Zhang, Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39(9) (1998), 5024-5061.
  • L. Y. Tian, Y. Hou and K. L. Zheng, The centralizer of~$\frak{gl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, Natur. Sci. J. Harbin Normal Univ., 32(2) (2016), 5-7. (Chinese)
  • Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chinese Sci. Bull., 42(9) (1997), 720-724.
  • Q. Zhang and Y. Zhang, Derivation algebras of the modular Lie superalgebras $W$ and $S$ of Cartan-type, Acta Math. Sci. Ser. B (Engl. Ed.), 20(1) (2000), 137-144.
  • D. Mao and K. L. Zheng, Centralizer of general linear Lie superalgebra in generalized Witt Lie superalgebra, J. Jilin Univ. Sci., 60(1) (2022), 27-34. (Chinese)

The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic

Year 2024, Early Access, 1 - 7
https://doi.org/10.24330/ieja.1496115

Abstract

This paper considers centralizers of the Lie superalgebra~$\frak{sl}(0,n)$ over prime characteristic fields. Using homological methods, the centralizers of the even and odd parts of ~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra are calculated and a summary of their structural properties is provided.

References

  • B. DeWitt, Supermanifolds, Second edition, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1992.
  • P. Fayet and S. Ferrara, Supersymmetry, Phys. Rep., 32C(5) (1977), 249-334.
  • G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2), 57 (1953), 591-603.
  • N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1962.
  • N Jacobson, Lie Algebras, Republication of the 1962 original, Dover Publications, New York, 1979.
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, The centralizer of~$\frak{sl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, J. Northeast Normal Univ. (Natural Science Edition), 52(1) (2020), 10-12. (Chinese)
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, Centralizers of~$\frak{sl}(2,1)$ and~$\frak{sl}(1,2)$ in the generalized Witt Lie superalgebra over fields of prime characteristics, Journal of Harbin University of Science and Technology, 26(1) (2021), 144-148. (Chinese)
  • R. Mokhtari, R. Hoseini Sani and A. Chenaghlou, Supersymmetry approach to the Dirac equation in the presence of the deformed Woods-Saxon potential, Eur. Phys. J. Plus, 134 (2019), 446 (7 pp).
  • J. J. Rotman, An Introduction to Homological Algebra, 2nd ed, Universitext, Springer, New York, 2009.
  • M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979.
  • M. Scheunert and R. B. Zhang, Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39(9) (1998), 5024-5061.
  • L. Y. Tian, Y. Hou and K. L. Zheng, The centralizer of~$\frak{gl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, Natur. Sci. J. Harbin Normal Univ., 32(2) (2016), 5-7. (Chinese)
  • Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chinese Sci. Bull., 42(9) (1997), 720-724.
  • Q. Zhang and Y. Zhang, Derivation algebras of the modular Lie superalgebras $W$ and $S$ of Cartan-type, Acta Math. Sci. Ser. B (Engl. Ed.), 20(1) (2000), 137-144.
  • D. Mao and K. L. Zheng, Centralizer of general linear Lie superalgebra in generalized Witt Lie superalgebra, J. Jilin Univ. Sci., 60(1) (2022), 27-34. (Chinese)
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Liwen Yu This is me

Keli Zheng This is me

Early Pub Date June 5, 2024
Publication Date
Submission Date April 16, 2024
Acceptance Date May 19, 2024
Published in Issue Year 2024 Early Access

Cite

APA Yu, L., & Zheng, K. (2024). The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. International Electronic Journal of Algebra1-7. https://doi.org/10.24330/ieja.1496115
AMA Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. Published online June 1, 2024:1-7. doi:10.24330/ieja.1496115
Chicago Yu, Liwen, and Keli Zheng. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra, June (June 2024), 1-7. https://doi.org/10.24330/ieja.1496115.
EndNote Yu L, Zheng K (June 1, 2024) The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. International Electronic Journal of Algebra 1–7.
IEEE L. Yu and K. Zheng, “The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic”, IEJA, pp. 1–7, June 2024, doi: 10.24330/ieja.1496115.
ISNAD Yu, Liwen - Zheng, Keli. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra. June 2024. 1-7. https://doi.org/10.24330/ieja.1496115.
JAMA Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. 2024;:1–7.
MLA Yu, Liwen and Keli Zheng. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra, 2024, pp. 1-7, doi:10.24330/ieja.1496115.
Vancouver Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. 2024:1-7.