Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1557211

Abstract

References

  • W. Atiponrat, Topological gyrogroups: Generalization of topological groups, Topology Appl., 224 (2017), 73-82.
  • W. Atiponrat, R. Maungchang, T. Suksumran, T. Suwansri and J. Wattanapan, The complete list of solutions to Möbius's Exponential Equation, (2024), preprint.
  • M. Bao, On strongly topological gyrogroups, Filomat, 38(8) (2024), 2821-2833.
  • L. Bussaban, A. Kaewkhao and S. Suantai, Cayley graphs of gyrogroups, Quasigroups Related Systems, 27(1) (2019), 25-32.
  • M. Ferreira, Harmonic analysis on the Möbius gyrogroup, J. Fourier Anal. Appl., 21(2) (2015), 281-317.
  • Y.-Y. Jin and L.-H. Xie, On paratopological gyrogroups, Topology Appl., 308 (2022), 107994 (17 pp).
  • A. Kumar, M. S. Pandey, S. Kushwaha and S. K. Upadhyay, Group completion of a gyrogroup, Nat. Acad. Sci. Lett., 47(4) (2024), 419-424.
  • R. Lal and V. Kakkar, Gyrogroups associated with groups, Comm. Algebra, 50(2) (2022), 524-537.
  • T. Suksumran, The algebra of gyrogroups: Cayley's theorem, Lagrange's theorem, and isomorphism theorems, Essays in mathematics and its applications, (2016), 369-437.
  • T. Suksumran, Special subgroups of gyrogroups: Commutators, nuclei and radical, Mathematics Interdisciplinary Research, 1 (2016), 53-68.
  • T. Suksumran, On metric structures of normed gyrogroups, Mathematical Analysis and Applications, Springer Optim. Appl., 154 (2019), 529-542.
  • T. Suksumran, Associativization of gyrogroups and the universal property, Asian-Eur. J. Math., (2024), in press, DOI: 10.1142/S1793557124500669.
  • T. Suksumran and K. Wiboonton, Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups Related Systems, 22(2) (2014), 283-294.
  • A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, Fund. Theories Phys., 117, Kluwer Academic Publishers Group, Dordrecht, 2001.
  • A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
  • A. A. Ungar, From Möbius to gyrogroups, Amer. Math. Monthly, 115(2) (2008), 138-144.
  • A. A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
  • J. Wattanapan, W. Atiponrat and T. Suksumran, Extension of the Svarc-Milnor lemma to gyrogroups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115(3) (2021), 122 (17 pp).
  • L.-H. Xie, Fuzzy gyronorms on gyrogroups, Fuzzy Sets and Systems, 442 (2022), 270-287.

On the extension problem for gyrogroups

Year 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1557211

Abstract

A gyrogroup is an algebraic structure whose operation is in \mbox{general} non-associative and shares common properties with groups. In this paper, we introduce two disjoint families of gyrogroups. One family consists of \mbox{gyrogroups} whose operations are, in some sense, most far from being associative called contra-associative gyrogroups. The other family consists of gyrogroups that are, in some sense, most close to groups called g-extensive gyrogroups. We then describe their structural properties, which eventually lead to studying the extension problem for gyrogoups in detail using the notion of associators. In particular, we refine the hierarchy of gyrogroup structure by showing that generic gyrogroups are extensions of contra-associative gyrogroups or g-extensive gyrogroups.

References

  • W. Atiponrat, Topological gyrogroups: Generalization of topological groups, Topology Appl., 224 (2017), 73-82.
  • W. Atiponrat, R. Maungchang, T. Suksumran, T. Suwansri and J. Wattanapan, The complete list of solutions to Möbius's Exponential Equation, (2024), preprint.
  • M. Bao, On strongly topological gyrogroups, Filomat, 38(8) (2024), 2821-2833.
  • L. Bussaban, A. Kaewkhao and S. Suantai, Cayley graphs of gyrogroups, Quasigroups Related Systems, 27(1) (2019), 25-32.
  • M. Ferreira, Harmonic analysis on the Möbius gyrogroup, J. Fourier Anal. Appl., 21(2) (2015), 281-317.
  • Y.-Y. Jin and L.-H. Xie, On paratopological gyrogroups, Topology Appl., 308 (2022), 107994 (17 pp).
  • A. Kumar, M. S. Pandey, S. Kushwaha and S. K. Upadhyay, Group completion of a gyrogroup, Nat. Acad. Sci. Lett., 47(4) (2024), 419-424.
  • R. Lal and V. Kakkar, Gyrogroups associated with groups, Comm. Algebra, 50(2) (2022), 524-537.
  • T. Suksumran, The algebra of gyrogroups: Cayley's theorem, Lagrange's theorem, and isomorphism theorems, Essays in mathematics and its applications, (2016), 369-437.
  • T. Suksumran, Special subgroups of gyrogroups: Commutators, nuclei and radical, Mathematics Interdisciplinary Research, 1 (2016), 53-68.
  • T. Suksumran, On metric structures of normed gyrogroups, Mathematical Analysis and Applications, Springer Optim. Appl., 154 (2019), 529-542.
  • T. Suksumran, Associativization of gyrogroups and the universal property, Asian-Eur. J. Math., (2024), in press, DOI: 10.1142/S1793557124500669.
  • T. Suksumran and K. Wiboonton, Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups Related Systems, 22(2) (2014), 283-294.
  • A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, Fund. Theories Phys., 117, Kluwer Academic Publishers Group, Dordrecht, 2001.
  • A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
  • A. A. Ungar, From Möbius to gyrogroups, Amer. Math. Monthly, 115(2) (2008), 138-144.
  • A. A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
  • J. Wattanapan, W. Atiponrat and T. Suksumran, Extension of the Svarc-Milnor lemma to gyrogroups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115(3) (2021), 122 (17 pp).
  • L.-H. Xie, Fuzzy gyronorms on gyrogroups, Fuzzy Sets and Systems, 442 (2022), 270-287.
There are 19 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Teerapong Suksumran

Early Pub Date September 27, 2024
Publication Date
Submission Date July 4, 2024
Acceptance Date August 1, 2024
Published in Issue Year 2024 Early Access

Cite

APA Suksumran, T. (2024). On the extension problem for gyrogroups. International Electronic Journal of Algebra1-19. https://doi.org/10.24330/ieja.1557211
AMA Suksumran T. On the extension problem for gyrogroups. IEJA. Published online September 1, 2024:1-19. doi:10.24330/ieja.1557211
Chicago Suksumran, Teerapong. “On the Extension Problem for Gyrogroups”. International Electronic Journal of Algebra, September (September 2024), 1-19. https://doi.org/10.24330/ieja.1557211.
EndNote Suksumran T (September 1, 2024) On the extension problem for gyrogroups. International Electronic Journal of Algebra 1–19.
IEEE T. Suksumran, “On the extension problem for gyrogroups”, IEJA, pp. 1–19, September 2024, doi: 10.24330/ieja.1557211.
ISNAD Suksumran, Teerapong. “On the Extension Problem for Gyrogroups”. International Electronic Journal of Algebra. September 2024. 1-19. https://doi.org/10.24330/ieja.1557211.
JAMA Suksumran T. On the extension problem for gyrogroups. IEJA. 2024;:1–19.
MLA Suksumran, Teerapong. “On the Extension Problem for Gyrogroups”. International Electronic Journal of Algebra, 2024, pp. 1-19, doi:10.24330/ieja.1557211.
Vancouver Suksumran T. On the extension problem for gyrogroups. IEJA. 2024:1-19.