Research Article
BibTex RIS Cite

Year 2025, Early Access, 1 - 14
https://doi.org/10.24330/ieja.1718902

Abstract

References

  • E. Ballico, On the numerical range of matrices over a finite field, Linear Algebra Appl., 512 (2017), 162-171.
  • A. I. Basha, Linear Algebra Over Finite Fields, Ph.D. Thesis, Washington State University, Washington, 2020.
  • A. I. Basha and J. J. McDonald, Orthogonality over finite fields, Linear Multilinear Algebra, 70(22) (2022), 7277-7289.
  • J. I. Coons, J. Jenkins, D. Knowles, R. A. Luke and P. X. Rault, Numerical ranges over finite fields, Linear Algebra Appl., 501 (2016), 37-47.
  • N. Jacobson, Basic Algebra I, W. H. Freeman and Company, New York, 1985.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, New York, 1994.
  • S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, New York, 2004.
  • S. Roman, Advanced Linear Algebra, Third Edition, Graduate Texts in Mathematics, 135, Springer, New York, 2008.
  • L. Sok, On Hermitian LCD codes and their gray image, Finite Fields Appl., 62 (2020), 101623 (20 pp).
  • S. Sylviani and H. Garminia, The development of inner product spaces and its generalization: a survey, J. Phys. Conf. Ser., 1722 (2021), 012031 (7 pp).
  • J. B. Wilson, Optimal algorithms of Gram-Schmidt type, Linear Algebra Appl., 438(12) (2013), 4573-4583.

Extended Gram-Schmidt process on sesquilinear spaces over finite fields

Year 2025, Early Access, 1 - 14
https://doi.org/10.24330/ieja.1718902

Abstract

Orthonormal bases play an important role in the geometric study of vector spaces. For inner product spaces over real or complex number fields, we can apply Gram-Schmidt algorithm to construct an orthonormal subset from a linearly independent subset. However, on sesquilinear spaces over finite fields, Gram-Schmidt algorithm fails to produce an orthonormal subset because of the presence of non-zero, self-orthogonal vectors. In fact, there is a subspace that does not contain an orthonormal basis. In this paper, we study sesquilinear spaces over finite fields and show that a non-zero subspace has an orthonormal basis if and only if it is non-degenerate. An Extended Gram-Schmidt Process (EG-SP) is then discussed to construct an orthogonal subset from a linearly independent subset having equal generated subspaces. An advantage of the proposed EG-SP is that the obtained orthogonal subset is orthonormal when the generated subspace is non-degenerate. In addition, we can also extend an orthonormal subset of a sesquilinear space to an orthonormal basis.

References

  • E. Ballico, On the numerical range of matrices over a finite field, Linear Algebra Appl., 512 (2017), 162-171.
  • A. I. Basha, Linear Algebra Over Finite Fields, Ph.D. Thesis, Washington State University, Washington, 2020.
  • A. I. Basha and J. J. McDonald, Orthogonality over finite fields, Linear Multilinear Algebra, 70(22) (2022), 7277-7289.
  • J. I. Coons, J. Jenkins, D. Knowles, R. A. Luke and P. X. Rault, Numerical ranges over finite fields, Linear Algebra Appl., 501 (2016), 37-47.
  • N. Jacobson, Basic Algebra I, W. H. Freeman and Company, New York, 1985.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, New York, 1994.
  • S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, New York, 2004.
  • S. Roman, Advanced Linear Algebra, Third Edition, Graduate Texts in Mathematics, 135, Springer, New York, 2008.
  • L. Sok, On Hermitian LCD codes and their gray image, Finite Fields Appl., 62 (2020), 101623 (20 pp).
  • S. Sylviani and H. Garminia, The development of inner product spaces and its generalization: a survey, J. Phys. Conf. Ser., 1722 (2021), 012031 (7 pp).
  • J. B. Wilson, Optimal algorithms of Gram-Schmidt type, Linear Algebra Appl., 438(12) (2013), 4573-4583.
There are 11 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Yasin Prasetia This is me

Rian Kurnia This is me

Andriko Andriko This is me

Pudji Astuti This is me

Early Pub Date June 13, 2025
Publication Date October 13, 2025
Submission Date October 3, 2024
Acceptance Date April 13, 2025
Published in Issue Year 2025 Early Access

Cite

APA Prasetia, Y., Kurnia, R., Andriko, A., Astuti, P. (2025). Extended Gram-Schmidt process on sesquilinear spaces over finite fields. International Electronic Journal of Algebra1-14. https://doi.org/10.24330/ieja.1718902
AMA Prasetia Y, Kurnia R, Andriko A, Astuti P. Extended Gram-Schmidt process on sesquilinear spaces over finite fields. IEJA. Published online June 1, 2025:1-14. doi:10.24330/ieja.1718902
Chicago Prasetia, Yasin, Rian Kurnia, Andriko Andriko, and Pudji Astuti. “Extended Gram-Schmidt Process on Sesquilinear Spaces over Finite Fields”. International Electronic Journal of Algebra, June (June 2025), 1-14. https://doi.org/10.24330/ieja.1718902.
EndNote Prasetia Y, Kurnia R, Andriko A, Astuti P (June 1, 2025) Extended Gram-Schmidt process on sesquilinear spaces over finite fields. International Electronic Journal of Algebra 1–14.
IEEE Y. Prasetia, R. Kurnia, A. Andriko, and P. Astuti, “Extended Gram-Schmidt process on sesquilinear spaces over finite fields”, IEJA, pp. 1–14, June2025, doi: 10.24330/ieja.1718902.
ISNAD Prasetia, Yasin et al. “Extended Gram-Schmidt Process on Sesquilinear Spaces over Finite Fields”. International Electronic Journal of Algebra. June2025. 1-14. https://doi.org/10.24330/ieja.1718902.
JAMA Prasetia Y, Kurnia R, Andriko A, Astuti P. Extended Gram-Schmidt process on sesquilinear spaces over finite fields. IEJA. 2025;:1–14.
MLA Prasetia, Yasin et al. “Extended Gram-Schmidt Process on Sesquilinear Spaces over Finite Fields”. International Electronic Journal of Algebra, 2025, pp. 1-14, doi:10.24330/ieja.1718902.
Vancouver Prasetia Y, Kurnia R, Andriko A, Astuti P. Extended Gram-Schmidt process on sesquilinear spaces over finite fields. IEJA. 2025:1-14.