Research Article
BibTex RIS Cite

Fields whose torsion free parts divisible with trivial Brauer group

Year 2022, Volume: 32 Issue: 32, 217 - 227, 16.07.2022
https://doi.org/10.24330/ieja.1144156

Abstract

Let $F_0$ be an absolutely algebraic field of characteristic $p>0$ and
$\kappa$ an infinite cardinal. It is shown that there exists a
field $F$ such that $F^*\cong F^*_0\oplus(\oplus_\kappa
\mathbb{Q})$ with $Br(F)=\{0\}$. Let $L$ be an algebraic closure
of $F$. Then for any finite subextension $K$ of $L/F$, we have
$K^*\cong T(K^*)\oplus(\oplus_\kappa \mathbb{Q})$, where $T(K^*)$
is the group of torsion elements of $K^*$. In addition,
$Br(K)=\{0\}$ and $[K:F]=[T(K^*) \cup \{0\}:F_0]$.

References

  • J.-L. Colliot-Thelene, R. Guralnick and R. Wiegand, Multiplicative groups of fields modulo products of subfields, J. Pure Appl. Algebra, 106(3) (1996), 233-262.
  • M. Contessa, J. Mott and W. Nichols, Multiplicative groups of fields, in: Advances in Commutative Ring Theory, Fez 1997, in: Lect. Notes Pure Appl. Math., Vol. 205, Dekker, New York, 197-216, 1999.
  • R. M. Dicker, A set of independent axioms for a field and a condition for a group to be the multiplicative group of a field}, Proc. London Math. Soc., 18(3) (1968), 114-124.
  • P. K. Draxl, Skew Fields, Cambridge Univ. Press, Cambridge, 1983.
  • L. Fuchs, Abelian Groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960.
  • G. Karpilovsky, Unit Groups of Classical Rings, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988.
  • T. Y. Lam, A First Course in Noncommutative Rings, Second edition, Grad. Texts in Math., vol. 131, Springer-Verlag, New York, 2001.
  • S. Lang, Algebra, Third edition, Grad. Texts in Math., Vol. 211, Springer-Verlag, New York, 2002.
  • W. May, Multiplicative groups of fields, Proc. London Math. Soc., 24 (1972), 295-306.
  • W. May, Multiplicative groups under field extensions, Canadian J. Math., 31 (1979), 436-440.
  • A.S. Merkurjev, Brauer groups of fields, Comm. Algebra, 11(22) (1983), 2611-2624.
  • P. Morandi, Field and Galois Theory, Springer-Verlag, New York, 1996.
  • G. Oman, Divisible multiplicative groups of fields, J. Algebra, 453 (2016), 177-188.
  • R. S. Pierce, Associative Algebras, Grad. Text in Math., Vol. 88, Springer-Verlag, New York-Berlin, 1982.
  • D. J. S. Robinson, A Course in The Theory of Groups, Second edition, Grad. Texts in Math., Vol. 80, Springer-Verlag, New York, 1996.
  • W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985.
  • G. Whaples, The generality of local class field theory, Proc. Amer. Math. Soc., 8 (1957), 137-140.
Year 2022, Volume: 32 Issue: 32, 217 - 227, 16.07.2022
https://doi.org/10.24330/ieja.1144156

Abstract

References

  • J.-L. Colliot-Thelene, R. Guralnick and R. Wiegand, Multiplicative groups of fields modulo products of subfields, J. Pure Appl. Algebra, 106(3) (1996), 233-262.
  • M. Contessa, J. Mott and W. Nichols, Multiplicative groups of fields, in: Advances in Commutative Ring Theory, Fez 1997, in: Lect. Notes Pure Appl. Math., Vol. 205, Dekker, New York, 197-216, 1999.
  • R. M. Dicker, A set of independent axioms for a field and a condition for a group to be the multiplicative group of a field}, Proc. London Math. Soc., 18(3) (1968), 114-124.
  • P. K. Draxl, Skew Fields, Cambridge Univ. Press, Cambridge, 1983.
  • L. Fuchs, Abelian Groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960.
  • G. Karpilovsky, Unit Groups of Classical Rings, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988.
  • T. Y. Lam, A First Course in Noncommutative Rings, Second edition, Grad. Texts in Math., vol. 131, Springer-Verlag, New York, 2001.
  • S. Lang, Algebra, Third edition, Grad. Texts in Math., Vol. 211, Springer-Verlag, New York, 2002.
  • W. May, Multiplicative groups of fields, Proc. London Math. Soc., 24 (1972), 295-306.
  • W. May, Multiplicative groups under field extensions, Canadian J. Math., 31 (1979), 436-440.
  • A.S. Merkurjev, Brauer groups of fields, Comm. Algebra, 11(22) (1983), 2611-2624.
  • P. Morandi, Field and Galois Theory, Springer-Verlag, New York, 1996.
  • G. Oman, Divisible multiplicative groups of fields, J. Algebra, 453 (2016), 177-188.
  • R. S. Pierce, Associative Algebras, Grad. Text in Math., Vol. 88, Springer-Verlag, New York-Berlin, 1982.
  • D. J. S. Robinson, A Course in The Theory of Groups, Second edition, Grad. Texts in Math., Vol. 80, Springer-Verlag, New York, 1996.
  • W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985.
  • G. Whaples, The generality of local class field theory, Proc. Amer. Math. Soc., 8 (1957), 137-140.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Reza Fallah-moghaddam This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Fallah-moghaddam, R. (2022). Fields whose torsion free parts divisible with trivial Brauer group. International Electronic Journal of Algebra, 32(32), 217-227. https://doi.org/10.24330/ieja.1144156
AMA Fallah-moghaddam R. Fields whose torsion free parts divisible with trivial Brauer group. IEJA. July 2022;32(32):217-227. doi:10.24330/ieja.1144156
Chicago Fallah-moghaddam, Reza. “Fields Whose Torsion Free Parts Divisible With Trivial Brauer Group”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 217-27. https://doi.org/10.24330/ieja.1144156.
EndNote Fallah-moghaddam R (July 1, 2022) Fields whose torsion free parts divisible with trivial Brauer group. International Electronic Journal of Algebra 32 32 217–227.
IEEE R. Fallah-moghaddam, “Fields whose torsion free parts divisible with trivial Brauer group”, IEJA, vol. 32, no. 32, pp. 217–227, 2022, doi: 10.24330/ieja.1144156.
ISNAD Fallah-moghaddam, Reza. “Fields Whose Torsion Free Parts Divisible With Trivial Brauer Group”. International Electronic Journal of Algebra 32/32 (July 2022), 217-227. https://doi.org/10.24330/ieja.1144156.
JAMA Fallah-moghaddam R. Fields whose torsion free parts divisible with trivial Brauer group. IEJA. 2022;32:217–227.
MLA Fallah-moghaddam, Reza. “Fields Whose Torsion Free Parts Divisible With Trivial Brauer Group”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 217-2, doi:10.24330/ieja.1144156.
Vancouver Fallah-moghaddam R. Fields whose torsion free parts divisible with trivial Brauer group. IEJA. 2022;32(32):217-2.