Let $R$ be a commutative ring and $M$ be an $R$-module. A submodule $N$ of $M$ is called a d-submodule $($resp., an fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $($resp., $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ $($resp., finite subset $F\subseteq N)$ and $m'\in M$ implies that $m'\in N.$ Many examples, characterizations, and properties of these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, and von Neumann regular modules.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Early Pub Date | May 11, 2023 |
Publication Date | July 10, 2023 |
Published in Issue | Year 2023 Volume: 34 Issue: 34 |