Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 179 - 189, 14.01.2025
https://doi.org/10.24330/ieja.1518558

Abstract

References

  • S. K. Berberian, Baer ∗-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.
  • G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42.
  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhauser/Springer, New York, 2013.
  • R. Hazrat and L. Vas, Baer and Baer ∗-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60.
  • C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
  • I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461.
  • A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer ∗-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400.
  • A. Khairnar and B. N. Waphare, Conrad’s partial order on p.q.-Baer ∗-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219.
  • A. Khairnar and B. N. Waphare, A sheaf representation of principally quasi-Baer ∗-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97.
  • N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart ∗-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195.
  • N. K. Thakare and B. N. Waphare, Baer ∗-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164.
  • L. Vas, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473.
  • L. Vas, ∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400.

Unitification of weakly Rickart and weakly p.q.-Baer *-rings

Year 2025, Volume: 37 Issue: 37, 179 - 189, 14.01.2025
https://doi.org/10.24330/ieja.1518558

Abstract

S. K. Berberian raised the problem ``Can every weakly Rickart $*$-ring be embedded in a Rickart $*$-ring with preservation of right projections?". Berberian has given a partial solution to this problem. Khairnar and Waphare raised a similar problem for p.q.-Baer $*$-rings and gave a partial solution. In this paper, we give more general partial solutions to both the problems.

References

  • S. K. Berberian, Baer ∗-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.
  • G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42.
  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhauser/Springer, New York, 2013.
  • R. Hazrat and L. Vas, Baer and Baer ∗-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60.
  • C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
  • I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461.
  • A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer ∗-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400.
  • A. Khairnar and B. N. Waphare, Conrad’s partial order on p.q.-Baer ∗-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219.
  • A. Khairnar and B. N. Waphare, A sheaf representation of principally quasi-Baer ∗-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97.
  • N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart ∗-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195.
  • N. K. Thakare and B. N. Waphare, Baer ∗-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164.
  • L. Vas, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473.
  • L. Vas, ∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Sanjay More This is me

Anil Khairnar This is me

B. N. Waphare This is me

Early Pub Date July 18, 2024
Publication Date January 14, 2025
Submission Date February 29, 2024
Acceptance Date May 15, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA More, S., Khairnar, A., & Waphare, B. N. (2025). Unitification of weakly Rickart and weakly p.q.-Baer *-rings. International Electronic Journal of Algebra, 37(37), 179-189. https://doi.org/10.24330/ieja.1518558
AMA More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. January 2025;37(37):179-189. doi:10.24330/ieja.1518558
Chicago More, Sanjay, Anil Khairnar, and B. N. Waphare. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 179-89. https://doi.org/10.24330/ieja.1518558.
EndNote More S, Khairnar A, Waphare BN (January 1, 2025) Unitification of weakly Rickart and weakly p.q.-Baer *-rings. International Electronic Journal of Algebra 37 37 179–189.
IEEE S. More, A. Khairnar, and B. N. Waphare, “Unitification of weakly Rickart and weakly p.q.-Baer *-rings”, IEJA, vol. 37, no. 37, pp. 179–189, 2025, doi: 10.24330/ieja.1518558.
ISNAD More, Sanjay et al. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra 37/37 (January 2025), 179-189. https://doi.org/10.24330/ieja.1518558.
JAMA More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. 2025;37:179–189.
MLA More, Sanjay et al. “Unitification of Weakly Rickart and Weakly p.Q.-Baer *-Rings”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 179-8, doi:10.24330/ieja.1518558.
Vancouver More S, Khairnar A, Waphare BN. Unitification of weakly Rickart and weakly p.q.-Baer *-rings. IEJA. 2025;37(37):179-8.