Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 352 - 365, 14.01.2025
https://doi.org/10.24330/ieja.1567377

Abstract

References

  • R. Atanasov, T. Foguel and A. Penland, Equal quasi-partition of p-groups, Results Math., 64(1-2) (2013), 185-191.
  • Y. Berkovich, Minimal nonabelian and maximal subgroups of a finite p-group, Glas. Mat. Ser. III, 43(63)(1) (2008), 97-109.
  • Y. Berkovich, Coverings of finite groups by few proper subgroups, Glas. Mat. Ser. III, 45(65)(2) (2010), 415-429.
  • M. Bhargava, When is a group the union of proper normal subgroups?, Amer. Math. Monthly, 109(5) (2002), 471-473.
  • W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24(3-4) (1997), 235-265.
  • M. Bruckheimer, A. C. Bryan and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly, 77 (1970), 52-57.
  • T. C. Burness and E. Covato, On the prime graph of simple groups, Bull. Aust. Math. Soc., 91(2) (2015), 227-240.
  • J. H. E. Cohn, On n-sum groups, Math. Scand., 75(1) (1994), 44-58.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford University Press, 1985.
  • T. S. Foguel and M. F. Ragland, Groups with a finite covering by isomorphic abelian subgroups, Computational group theory and the theory of groups, Contemp. Math., 470 (2008), 75-88.
  • G. D. Franceschi, Centralizers and conjugacy classes in finite classical groups, Preprint, 2020, https://doi.org/10.48550/arXiv.2008.12651.
  • The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.11.1, 2021, https://www.gap-system.org.
  • M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil'ev and N. Yang, Finite groups isospectral to simple groups, Commun. Math. Stat., 11(2) (2023), 169-194.
  • S. Haber and A. Rosenfeld, Groups as unions of proper subgroups, Amer. Math. Monthly, 66 (1959), 491-494.
  • I. M. Isaacs, Equally partitioned groups, Pacific J. Math., 49 (1973), 109-116.
  • I. M. Isaacs, Finite Group Theory, Grad. Stud. Math., 92. American Mathematical Society, Providence, RI, 2008.
  • T. Y. Lam, On subgroups of prime index, Amer. Math. Monthly, 111(3) (2004), 256-258.
  • M. W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, 111(2) (1987), 365-383.
  • M. W. Liebeck, C. E. Praeger and J. Saxl, Transitive subgroups of primitive permutation groups, J. Algebra, 234(2) (2000), 291-361.
  • N. V. Maslova, On the coincidence Grunberg-Kegel graphs of a finite simple group and its proper subgroup, Proc. Steklov Inst. Math., 288 (2015), 129-141.
  • A. Pachera, Exponent preserving subgroups of the finite simple groups, Comm. Algebra, 45(6) (2017), 2494-2504.
  • D. J. S. Robinson, A Course in the Theory of Groups (Second Edition), Grad. Texts in Math., 80, Springer-Verlag, New York, 1996.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., 5(5) (1926), 216-218.
  • A. Velasquez-Berroteran, Equal Coverings of Finite Groups, Thesis, https://doi.org/10.48550/arXiv.2206.14843.

Concerning equally covered groups

Year 2025, Volume: 37 Issue: 37, 352 - 365, 14.01.2025
https://doi.org/10.24330/ieja.1567377

Abstract

A finite group is equally covered if it has a covering by proper subgroups of equal orders. Among other results, it is shown that finite simple groups have no equal coverings, and for any finite group $G$ the $n^{\text{th}}$ Cartesian power of $G$ has an equal covering for some $n$. Some related topics are also discussed.

References

  • R. Atanasov, T. Foguel and A. Penland, Equal quasi-partition of p-groups, Results Math., 64(1-2) (2013), 185-191.
  • Y. Berkovich, Minimal nonabelian and maximal subgroups of a finite p-group, Glas. Mat. Ser. III, 43(63)(1) (2008), 97-109.
  • Y. Berkovich, Coverings of finite groups by few proper subgroups, Glas. Mat. Ser. III, 45(65)(2) (2010), 415-429.
  • M. Bhargava, When is a group the union of proper normal subgroups?, Amer. Math. Monthly, 109(5) (2002), 471-473.
  • W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24(3-4) (1997), 235-265.
  • M. Bruckheimer, A. C. Bryan and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly, 77 (1970), 52-57.
  • T. C. Burness and E. Covato, On the prime graph of simple groups, Bull. Aust. Math. Soc., 91(2) (2015), 227-240.
  • J. H. E. Cohn, On n-sum groups, Math. Scand., 75(1) (1994), 44-58.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford University Press, 1985.
  • T. S. Foguel and M. F. Ragland, Groups with a finite covering by isomorphic abelian subgroups, Computational group theory and the theory of groups, Contemp. Math., 470 (2008), 75-88.
  • G. D. Franceschi, Centralizers and conjugacy classes in finite classical groups, Preprint, 2020, https://doi.org/10.48550/arXiv.2008.12651.
  • The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.11.1, 2021, https://www.gap-system.org.
  • M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil'ev and N. Yang, Finite groups isospectral to simple groups, Commun. Math. Stat., 11(2) (2023), 169-194.
  • S. Haber and A. Rosenfeld, Groups as unions of proper subgroups, Amer. Math. Monthly, 66 (1959), 491-494.
  • I. M. Isaacs, Equally partitioned groups, Pacific J. Math., 49 (1973), 109-116.
  • I. M. Isaacs, Finite Group Theory, Grad. Stud. Math., 92. American Mathematical Society, Providence, RI, 2008.
  • T. Y. Lam, On subgroups of prime index, Amer. Math. Monthly, 111(3) (2004), 256-258.
  • M. W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, 111(2) (1987), 365-383.
  • M. W. Liebeck, C. E. Praeger and J. Saxl, Transitive subgroups of primitive permutation groups, J. Algebra, 234(2) (2000), 291-361.
  • N. V. Maslova, On the coincidence Grunberg-Kegel graphs of a finite simple group and its proper subgroup, Proc. Steklov Inst. Math., 288 (2015), 129-141.
  • A. Pachera, Exponent preserving subgroups of the finite simple groups, Comm. Algebra, 45(6) (2017), 2494-2504.
  • D. J. S. Robinson, A Course in the Theory of Groups (Second Edition), Grad. Texts in Math., 80, Springer-Verlag, New York, 1996.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., 5(5) (1926), 216-218.
  • A. Velasquez-Berroteran, Equal Coverings of Finite Groups, Thesis, https://doi.org/10.48550/arXiv.2206.14843.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

T. Foguel This is me

A. R. Moghaddamfar This is me

J. Schmidt This is me

A. Velasquez - Berroteran This is me

Early Pub Date October 15, 2024
Publication Date January 14, 2025
Submission Date August 21, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Foguel, T., Moghaddamfar, A. R., Schmidt, J., Velasquez - Berroteran, A. (2025). Concerning equally covered groups. International Electronic Journal of Algebra, 37(37), 352-365. https://doi.org/10.24330/ieja.1567377
AMA Foguel T, Moghaddamfar AR, Schmidt J, Velasquez - Berroteran A. Concerning equally covered groups. IEJA. January 2025;37(37):352-365. doi:10.24330/ieja.1567377
Chicago Foguel, T., A. R. Moghaddamfar, J. Schmidt, and A. Velasquez - Berroteran. “Concerning Equally Covered Groups”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 352-65. https://doi.org/10.24330/ieja.1567377.
EndNote Foguel T, Moghaddamfar AR, Schmidt J, Velasquez - Berroteran A (January 1, 2025) Concerning equally covered groups. International Electronic Journal of Algebra 37 37 352–365.
IEEE T. Foguel, A. R. Moghaddamfar, J. Schmidt, and A. Velasquez - Berroteran, “Concerning equally covered groups”, IEJA, vol. 37, no. 37, pp. 352–365, 2025, doi: 10.24330/ieja.1567377.
ISNAD Foguel, T. et al. “Concerning Equally Covered Groups”. International Electronic Journal of Algebra 37/37 (January 2025), 352-365. https://doi.org/10.24330/ieja.1567377.
JAMA Foguel T, Moghaddamfar AR, Schmidt J, Velasquez - Berroteran A. Concerning equally covered groups. IEJA. 2025;37:352–365.
MLA Foguel, T. et al. “Concerning Equally Covered Groups”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 352-65, doi:10.24330/ieja.1567377.
Vancouver Foguel T, Moghaddamfar AR, Schmidt J, Velasquez - Berroteran A. Concerning equally covered groups. IEJA. 2025;37(37):352-65.

Cited By