Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 366 - 384, 14.01.2025
https://doi.org/10.24330/ieja.1571446

Abstract

References

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
  • A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
  • V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
  • R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
  • K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
  • S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
  • S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
  • G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
  • D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
  • C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.

The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$

Year 2025, Volume: 37 Issue: 37, 366 - 384, 14.01.2025
https://doi.org/10.24330/ieja.1571446

Abstract

Let $\mathbb{F}_{q}$ be a finite field of characteristic $p>0$ with $|\mathbb{F}_{q}|=q=p^{k}$ and $\mathcal{U}(\mathbb{F}_{q}G)$ be the unit group of the group algebra $\mathbb{F}_{q}G$ for some group $G$. There are $6$ groups of order $42$ up to isomorphism. In this paper, we provide a characterization of $\mathcal{U}(\mathbb{F}_{3^{k}}(C_{3}\times D_{2n}))$ and establish the structures of the unit groups of some finite group algebras of groups of order $42$.

References

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
  • A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
  • V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
  • L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
  • R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
  • K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
  • S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
  • S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
  • G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
  • D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
  • C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
  • M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Sandeep Malik This is me

Rajendra Kumar Sharma

Early Pub Date October 21, 2024
Publication Date January 14, 2025
Submission Date February 28, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Malik, S., & Sharma, R. K. (2025). The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. International Electronic Journal of Algebra, 37(37), 366-384. https://doi.org/10.24330/ieja.1571446
AMA Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. January 2025;37(37):366-384. doi:10.24330/ieja.1571446
Chicago Malik, Sandeep, and Rajendra Kumar Sharma. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 366-84. https://doi.org/10.24330/ieja.1571446.
EndNote Malik S, Sharma RK (January 1, 2025) The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. International Electronic Journal of Algebra 37 37 366–384.
IEEE S. Malik and R. K. Sharma, “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”, IEJA, vol. 37, no. 37, pp. 366–384, 2025, doi: 10.24330/ieja.1571446.
ISNAD Malik, Sandeep - Sharma, Rajendra Kumar. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra 37/37 (January 2025), 366-384. https://doi.org/10.24330/ieja.1571446.
JAMA Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. 2025;37:366–384.
MLA Malik, Sandeep and Rajendra Kumar Sharma. “The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 366-84, doi:10.24330/ieja.1571446.
Vancouver Malik S, Sharma RK. The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$. IEJA. 2025;37(37):366-84.