Year 2025,
Volume: 37 Issue: 37, 366 - 384, 14.01.2025
Sandeep Malik
Rajendra Kumar Sharma
References
- S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
- A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
- V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
- L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
- L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
- R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
- J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
- K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
- N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
- N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
- N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
- S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
- S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
- G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
- D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
- C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
- M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
- M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
- M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
- R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
- G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.
The Structure of the Unit Group of $\mathbb{F}_{3^{k}}(C_{3}\times D_{2n})$ and Finite Group Algebras of Groups of Order $42$
Year 2025,
Volume: 37 Issue: 37, 366 - 384, 14.01.2025
Sandeep Malik
Rajendra Kumar Sharma
Abstract
Let $\mathbb{F}_{q}$ be a finite field of characteristic $p>0$ with $|\mathbb{F}_{q}|=q=p^{k}$ and $\mathcal{U}(\mathbb{F}_{q}G)$ be the unit group of the group algebra $\mathbb{F}_{q}G$ for some group $G$. There are $6$ groups of order $42$ up to isomorphism. In this paper, we provide a characterization of $\mathcal{U}(\mathbb{F}_{3^{k}}(C_{3}\times D_{2n}))$ and establish the structures of the unit groups of some finite group algebras of groups of order $42$.
References
- S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order $20$, Quaest. Math., 44(4) (2021), 503-511.
- A. Bovdi and L. Erdei, Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28(2) (2000), 625-630.
- V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
- L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
- L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}}D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
- R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Comm. Algebra, 36(9) (2008), 3191-3199.
- J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n}\times D_{6}$ over any finite field of characteristic $3$, Int. Electron. J. Algebra, 24 (2018), 62-67.
- K. Kaur and M. Khan, Units in $F_{2}D_{2p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
- N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 30(1) (2014), 17-25.
- N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}}D_{2n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
- N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}[D_{30}]$, Serdica Math. J., 41(2-3) (2015), 185-198.
- S. Malik and R. K. Sharma, Describing the group of units of integral grouprings $\mathbb{Z}D_{8}$ and $\mathbb{Z}D_{12}$, Asian-Eur. J. Math., 17(1) (2024), 2350236 (13 pp).
- S. Malik, R. K. Sharma and M. Sahai, The structure of the unit group of the group algebras $\mathbb{F}_{3^{k}}D_{6n}$ and $\mathbb{F}_{q}D_{42}$, Ann. Math. Inform., DOI: 10.33039/ami.2024.08.001.
- G. Mittal and R. K. Sharma, Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_{q}G$ from a subalgebra of factor group of $G$, Int. Electron. J. Algebra, 32 (2022), 91-100.
- D. S. Passman, The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
- C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
- M. Sahai and S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12(4) (2019), 1950066 (12 pp).
- M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most $16$, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp).
- M. Sahai and S. F. Ansari, Unit groups of group algebras of groups of order $18$, Comm. Algebra, 49(8) (2021), 3273-3282.
- R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_{3}$, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 23(2) (2007), 129-142.
- G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.