[1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni.
Carolinae. 45 (4), 591-596 (2004).
[2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35
(2008).
[3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. The Quarterly
Journal of Mathematics. 62 (2), 259-288 (2011).
[4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
[5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).
[6] Altunbaş, M., Gezer, A., Bilen, L.: Remarks about the Kaluza-Klein metric on tangent bundle. International Journal of Geometric Methods in
Modern Physics. 16 (3), 1950040 (2019).
[7] Anastasiei, M.: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19, 71-76 (1999).
[8] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 73-88 (1962).
[9] Gezer, A.: On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry. 6 (2), 19-31 (2013).
[10] Gezer, A., Altunba¸s, M.: Some notes concerning Riemannian metrics of Cheeger Gromoll type. Journal of Mathematical Analysis and
Applications. 396 (1), 119-132 (2012).
[11] Gezer, A., Karaman, Ç: On metallic Riemannian structures. Turkish Journal of Mathematics. 39 (6), 954-962, (2015).
[12] Hreţcanu, C.E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54 (2), 15-27
(2013).
[13] Hreţcanu, C.E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191
(2009).
[14] Özkan, M., Çıtlak, A.A., Taylan, E.: Prolongations of golden structure to tangent bundle of order 2. Gazi University Journal of Science. 28 (2),
253–258 (2015).
[15] Özkan, M., Peltek, B.: A new structure on manifolds: silver structure. International Electronic Journal of Geometry. 9 (2), 59-69 (2016).
[16] Özkan, M., Taylan, E., Çıtlak, A.A.: On lifts of silver structure. Journal of Science and Arts. 39 (2), 223-234 (2017).
[17] Özkan, M., Yılmaz, F.: Metallic structures on differentiable manifolds. Journal of Science and Arts. 44 (3), 645-660 (2018).
[18] Peyghan, E., Firuzi, F., De, U.C.: Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat. 33 (8), 2543-2554 (2019).
[19] Salimov, A., Kazimova, S.: Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics. 33 (1), 99-105 (2009).
[20] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
[21] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2), 407-417 (1991).
[22] Spinadel, V.W.: The metallic means family and forbidden symmetries. Int. Math. J. 2, 279-288 (2002).
Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics
Let $(M,g)$ be a Riemannian manifold and $(TM,\tilde{g})$ be its tangent bundle with the $g-$natural metric. In this paper, a family of metallic Riemannian structures $J$ is constructed on $TM,$ found conditions under which these structures are integrable. It is proved that $(TM,\tilde{g},J)$ is decomposable if and only if $(M,g)$ is flat.
[1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni.
Carolinae. 45 (4), 591-596 (2004).
[2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35
(2008).
[3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. The Quarterly
Journal of Mathematics. 62 (2), 259-288 (2011).
[4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
[5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).
[6] Altunbaş, M., Gezer, A., Bilen, L.: Remarks about the Kaluza-Klein metric on tangent bundle. International Journal of Geometric Methods in
Modern Physics. 16 (3), 1950040 (2019).
[7] Anastasiei, M.: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19, 71-76 (1999).
[8] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 73-88 (1962).
[9] Gezer, A.: On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry. 6 (2), 19-31 (2013).
[10] Gezer, A., Altunba¸s, M.: Some notes concerning Riemannian metrics of Cheeger Gromoll type. Journal of Mathematical Analysis and
Applications. 396 (1), 119-132 (2012).
[11] Gezer, A., Karaman, Ç: On metallic Riemannian structures. Turkish Journal of Mathematics. 39 (6), 954-962, (2015).
[12] Hreţcanu, C.E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54 (2), 15-27
(2013).
[13] Hreţcanu, C.E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191
(2009).
[14] Özkan, M., Çıtlak, A.A., Taylan, E.: Prolongations of golden structure to tangent bundle of order 2. Gazi University Journal of Science. 28 (2),
253–258 (2015).
[15] Özkan, M., Peltek, B.: A new structure on manifolds: silver structure. International Electronic Journal of Geometry. 9 (2), 59-69 (2016).
[16] Özkan, M., Taylan, E., Çıtlak, A.A.: On lifts of silver structure. Journal of Science and Arts. 39 (2), 223-234 (2017).
[17] Özkan, M., Yılmaz, F.: Metallic structures on differentiable manifolds. Journal of Science and Arts. 44 (3), 645-660 (2018).
[18] Peyghan, E., Firuzi, F., De, U.C.: Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat. 33 (8), 2543-2554 (2019).
[19] Salimov, A., Kazimova, S.: Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics. 33 (1), 99-105 (2009).
[20] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
[21] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2), 407-417 (1991).
[22] Spinadel, V.W.: The metallic means family and forbidden symmetries. Int. Math. J. 2, 279-288 (2002).
Altunbaş, M. (2023). Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. International Electronic Journal of Geometry, 16(1), 95-103. https://doi.org/10.36890/iejg.1145729
AMA
Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. April 2023;16(1):95-103. doi:10.36890/iejg.1145729
Chicago
Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 95-103. https://doi.org/10.36890/iejg.1145729.
EndNote
Altunbaş M (April 1, 2023) Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. International Electronic Journal of Geometry 16 1 95–103.
IEEE
M. Altunbaş, “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 95–103, 2023, doi: 10.36890/iejg.1145729.
ISNAD
Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry 16/1 (April 2023), 95-103. https://doi.org/10.36890/iejg.1145729.
JAMA
Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. 2023;16:95–103.
MLA
Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 95-103, doi:10.36890/iejg.1145729.
Vancouver
Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. 2023;16(1):95-103.