Research Article
BibTex RIS Cite

On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric

Year 2023, , 132 - 146, 30.04.2023
https://doi.org/10.36890/iejg.1182395

Abstract

Let $(M^{m}, g)$ be a Riemannian manifold and $TM$ its tangent bundle equipped with a deformed Sasaki metric. In this paper, firstly we investigate all forms of Riemannian curvature tensors of $TM$ (Riemannian curvature tensor, Ricci curvature, sectional curvature and scalar curvature). Secondly, we study the geometry of unit tangent bundle equipped with a deformed Sasaki metric, where we presented the formulas of the Levi-Civita connection and also all formulas of the Riemannian curvature tensors of this metric.

References

  • [1] Abbassi, M.T.K., Sarih, M.: On Natural Metrics on Tangent Bundles of Riemannian Manifolds, Arch. Math. 41, 71-92 (2005).
  • [2] Abbassi, M.T.K., Calvaruso, G.: The Curvature Tensor of g-Natural Metrics on Unit Tangent Sphere Bundles, Int. J. Contemp. Math. Sciences 3(6), 245-258 (2008).
  • [3] Altunbas, M., Simsek, R., Gezer, A.: A Study Concerning Berger type deformed Sasaki Metric on the Tangent Bundle, Zh. Mat. Fiz. Anal.Geom. 15(4), 435-447 (2019). https://doi.org/10.15407/mag15.04.435
  • [4] Boeckx, E., Vanhecke, L.: Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23(3), 427-448 (1997).
  • [5] Boussekkine, N., Zagane, A.: On deformed-Sasaki metric and harmonicity in tangent bundles, Commun. Korean Math. Soc. 35(3), 1019-1035 (2020). https://doi.org/10.4134/CKMS.c200018
  • [6] Dombrowski, P.: On the Geometry of the tangent bundle, J. Reine Angew. Math. 210(1962), 73–88 . https://doi.org/10.1515/crll. 1962.210.73
  • [7] Gudmundsson, S., Kappos, E.: On the geometry of the tangent bundle with the Cheeger-Gromoll metric, Tokyo J. Math. 25(1), 75-83 (2002). https://doi.org/10.3836/tjm/1244208938
  • [8] Kowalski, O., Sekizawa, M.: On tangent sphere bundles with small or large constant, Ann. Global Anal. Geom. 18, 207-219 (2000).
  • [9] Musso, E.,Tricerri, F.: Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 150 (4), 1-19 (1988). https://doi.org/10.1007/ BF01761461
  • [10] Salimov, A.A., Gezer, A., Akbulut, K.: Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math. 6(2), 135–147 (2009). https: //doi.org/10.1007/s00009-009-0001-z
  • [11] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, II, Tohoku Math. J. (2) 14(2), 146-155 (1962). DOI: 10.2748/tmj/1178244169
  • [12] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2), 407-417 (1991). DOI10.3836/tjm/ 1270130381
  • [13] Yampol’skii, A.L.: The curvature of the Sasaki metric of tangent sphere bundles (Russian), Ukr. Ceom. Sb. 28, 132-145 (1985). English translation in J. Soy. Math. 48 (1990), 108-117.
  • [14] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles, M. Dekker, New York, (1973).
  • [15] Zagane, A.: Some Notes on Berger Type Deformed Sasaki Metric in the Cotangent Bundle, Int. Electron. J. Geom. 14(2), 348-360 (2021). HTTPS://DOI.ORG/10.36890/IEJG.911446
  • [16] Zagane, A.: Vertical rescaled berger deformation metric on the tangent bundle, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 41(4), 166-180 (2021).
  • [17] Zagane, A.: A study of harmonic sections of tangent bundles with vertically rescaled Berger-type deformed Sasaki metric, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 47(2),270-285(2021). https://doi.org/10.30546/2409-4994.47.2.270
Year 2023, , 132 - 146, 30.04.2023
https://doi.org/10.36890/iejg.1182395

Abstract

References

  • [1] Abbassi, M.T.K., Sarih, M.: On Natural Metrics on Tangent Bundles of Riemannian Manifolds, Arch. Math. 41, 71-92 (2005).
  • [2] Abbassi, M.T.K., Calvaruso, G.: The Curvature Tensor of g-Natural Metrics on Unit Tangent Sphere Bundles, Int. J. Contemp. Math. Sciences 3(6), 245-258 (2008).
  • [3] Altunbas, M., Simsek, R., Gezer, A.: A Study Concerning Berger type deformed Sasaki Metric on the Tangent Bundle, Zh. Mat. Fiz. Anal.Geom. 15(4), 435-447 (2019). https://doi.org/10.15407/mag15.04.435
  • [4] Boeckx, E., Vanhecke, L.: Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23(3), 427-448 (1997).
  • [5] Boussekkine, N., Zagane, A.: On deformed-Sasaki metric and harmonicity in tangent bundles, Commun. Korean Math. Soc. 35(3), 1019-1035 (2020). https://doi.org/10.4134/CKMS.c200018
  • [6] Dombrowski, P.: On the Geometry of the tangent bundle, J. Reine Angew. Math. 210(1962), 73–88 . https://doi.org/10.1515/crll. 1962.210.73
  • [7] Gudmundsson, S., Kappos, E.: On the geometry of the tangent bundle with the Cheeger-Gromoll metric, Tokyo J. Math. 25(1), 75-83 (2002). https://doi.org/10.3836/tjm/1244208938
  • [8] Kowalski, O., Sekizawa, M.: On tangent sphere bundles with small or large constant, Ann. Global Anal. Geom. 18, 207-219 (2000).
  • [9] Musso, E.,Tricerri, F.: Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 150 (4), 1-19 (1988). https://doi.org/10.1007/ BF01761461
  • [10] Salimov, A.A., Gezer, A., Akbulut, K.: Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math. 6(2), 135–147 (2009). https: //doi.org/10.1007/s00009-009-0001-z
  • [11] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, II, Tohoku Math. J. (2) 14(2), 146-155 (1962). DOI: 10.2748/tmj/1178244169
  • [12] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2), 407-417 (1991). DOI10.3836/tjm/ 1270130381
  • [13] Yampol’skii, A.L.: The curvature of the Sasaki metric of tangent sphere bundles (Russian), Ukr. Ceom. Sb. 28, 132-145 (1985). English translation in J. Soy. Math. 48 (1990), 108-117.
  • [14] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles, M. Dekker, New York, (1973).
  • [15] Zagane, A.: Some Notes on Berger Type Deformed Sasaki Metric in the Cotangent Bundle, Int. Electron. J. Geom. 14(2), 348-360 (2021). HTTPS://DOI.ORG/10.36890/IEJG.911446
  • [16] Zagane, A.: Vertical rescaled berger deformation metric on the tangent bundle, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 41(4), 166-180 (2021).
  • [17] Zagane, A.: A study of harmonic sections of tangent bundles with vertically rescaled Berger-type deformed Sasaki metric, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 47(2),270-285(2021). https://doi.org/10.30546/2409-4994.47.2.270
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Abderrahım Zagane 0000-0001-9339-3787

Publication Date April 30, 2023
Acceptance Date January 6, 2023
Published in Issue Year 2023

Cite

APA Zagane, A. (2023). On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric. International Electronic Journal of Geometry, 16(1), 132-146. https://doi.org/10.36890/iejg.1182395
AMA Zagane A. On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric. Int. Electron. J. Geom. April 2023;16(1):132-146. doi:10.36890/iejg.1182395
Chicago Zagane, Abderrahım. “On the Geometry of Tangent Bundle and Unit Tangent Bundle With Deformed-Sasaki Metric”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 132-46. https://doi.org/10.36890/iejg.1182395.
EndNote Zagane A (April 1, 2023) On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric. International Electronic Journal of Geometry 16 1 132–146.
IEEE A. Zagane, “On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 132–146, 2023, doi: 10.36890/iejg.1182395.
ISNAD Zagane, Abderrahım. “On the Geometry of Tangent Bundle and Unit Tangent Bundle With Deformed-Sasaki Metric”. International Electronic Journal of Geometry 16/1 (April 2023), 132-146. https://doi.org/10.36890/iejg.1182395.
JAMA Zagane A. On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric. Int. Electron. J. Geom. 2023;16:132–146.
MLA Zagane, Abderrahım. “On the Geometry of Tangent Bundle and Unit Tangent Bundle With Deformed-Sasaki Metric”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 132-46, doi:10.36890/iejg.1182395.
Vancouver Zagane A. On the Geometry of Tangent Bundle and Unit Tangent Bundle with Deformed-Sasaki Metric. Int. Electron. J. Geom. 2023;16(1):132-46.