Review
BibTex RIS Cite

Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map

Year 2023, , 4 - 47, 30.04.2023
https://doi.org/10.36890/iejg.1216024

Abstract

The theory of finite type submanifolds was introduced by the first author in late 1970s and it has become a useful tool for investigation of submanifolds. Later, the first author and P. Piccinni extended the notion of finite type submanifolds to finite type maps of submanifolds; in particular, to submanifolds with finite type Gauss map. Since then, there have been rapid developments in the theory of finite type.
The simplest finite type submanifolds and submanifolds with finite type Gauss maps are those which are of 1-type. The classes of such submanifolds constitute very special and interesting families in the finite type theory.

References

  • [1] Arslan, K., Bulca, B., Kılıç, B., Kim, Y. H., Murathan, C., Öztürk, G.: Tensor product surfaces with pointwise 1-type Gauss map, Bull.Korean Math. Soc. 48(3) (2011), 601–609.
  • [2] Arslan, K., Bayram, B. K., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Vranceanu surface in $E^4$ with pointwise 1-type Gauss map,Indian J. Pure Appl. Math. 42(1) (2011), 41–51.
  • [3] Arslan, K., Bayram, K. B., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Rotational embeddings in $E^4$ with pointwise 1-type Gauss map, Turkish J. Math. 35(3) (2011), 493–499.
  • [4] Arslan, K., Bulca, B., Milousheva, V.: Meridian surfaces in $E^4$ with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 51 (2014),911–922.
  • [5] Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math. 20 (2016), 311–332.
  • [6] Baikoussis, C., Blair, D. E.: Finite type integral submanifolds of the contact manifold $R^{2n+1}$(−3), Bull. Inst. Math. Acad. Sinica 19 (1991),327–350.
  • [7] Baikoussis, C., Chen, B.-Y., Verstraelen, L.: Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), 341–349.
  • [8] Baikoussis, C., Verstraelen, L.: The Chen-type of the spiral surfaces, Results Math. 28 (1995), 214–223.
  • [9] Barros, M., Chen, B.-Y., Urbano, F.: Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4 (1981), 399–417.
  • [10] Bejancu, A.: CR submanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978), 135–142.
  • [11] Bektaş, B., Canfes, E. Ö., Dursun, U.: On rotational surfaces in pseudo-Euclidean space E4t with pointwise 1-type Gauss map, Acta Univ.Apulensis Math. Inform. No. 45 (2016), 43–59.
  • [12] Bektaş, B., Canfes, E. Ö., Dursun, U.: Pseudo-spherical submanifolds with 1-type pseudo-spherical Gauss map, Results Math. 71(3-4)(2017), 867–887.
  • [13] Bektaş, B., Dursun, U.: Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E41 with pointwise 1-type Gauss map, Filomat 29 (2015), 381–392.
  • [14] Bektaş, B., Dursun, U.: On spherical submanifolds with finite type spherical Gauss map, Adv. Geom. 16 (2016), 243–251.
  • [15] Bektaş, B., Van der Veken, J., Vrancken, L.: Surfaces in a pseudo-sphere with harmonic or 1-type pseudo-spherical Gauss map, Ann. Global Anal. Geom. 52 (2017), 45–55.
  • [16] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edition, Birkhäuser Boston, Inc., MA , 2010.
  • [17] Brada, C., Niglio, L.: Connected compact minimal Chen-type-1 submanifolds of the Grassmannian manifolds, Bull. Soc. Math. Belg. Sér. B 44 (1992), 299–310.
  • [18] Canfes, E. Ö., Turgay, N. C.: On the Gauss map of minimal Lorentzian surfaces in 4-dimensional semi-Riemannian space forms with index 2, Publ. Math. (Debrecen) 91 (2017), 349–367.
  • [19] Chen, B.-Y.: On the surfaces with parallel mean curvature vector, Indiana Univ. Math. J. 22(7) (1972), 655–666.
  • [20] Chen, B.-Y.: On the total curvature of immersed manifolds, IV: Spectrum and total mean curvature. Bull. Inst. Math. Acad. Sinica 7 (1979), 301–311.
  • [21] Chen, B.-Y.: On the total curvature of immersed manifolds VI: Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11(3) (1983), 309–328.
  • [22] Chen, B.-Y.: Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
  • [23] Chen, B.Y.: Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), 358–374.
  • [24] Chen, B.-Y.: Finite type pseudo-Riemannian submanifolds, Tamkang J. Math.17(2) (1986), 137–151.
  • [25] Chen, B.-Y.: Surfaces of finite type in Euclidean 3-space, Bull. Belg. Math. Soc. Simon Stevin 39 (1987), 243–254.
  • [26] Chen, B.-Y.: Null 2-type surfaces in E3 are circular cylinders, Kodai Math. J. 11 (1988), 295–299.
  • [27] Chen, B.-Y.: Null 2-type surfaces in Euclidean space, in: Algebra, analysis and geometry (Taipei, 1988), 1–18,World Scientific, River Edge, NJ (1989).
  • [28] Chen, B.-Y.: Slant immersions, Bull. Aust. Math. Soc. 41(1) (1990), 135–147.
  • [29] Chen, B.-Y.: Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Belgium, 1990.
  • [30] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169–188.
  • [31] Chen, B.-Y.: Linearly independent, orthogonal and equivariant immersions, Kodai Math. J. 14(3) (1991), 341–349.
  • [32] Chen, B.-Y.: Submanifolds of finite type in hyperbolic spaces, Taiwanese J. Math. 20 (1992), 5–21.
  • [33] Chen, B.-Y.: A report of submanifolds of finite type, Soochow J. Math. 22 (1996), 117–337.
  • [34] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. 26 (2000), 105–127.
  • [35] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math. 5 (2001), 681–723.
  • [36] Chen, B.-Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific Publishing, Hackensack, NJ, 2011.
  • [37] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45(1) (2014), 87–108.
  • [38] Chen, B.-Y.: Total Mean Curvature and Submanifolds of Finite Type (2nd Edition), World Scientific Publishing, Hackensack, NJ, 2015.
  • [39] Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific Publishing, Hackensack, NJ, 2017.
  • [40] Chen, B.-Y.: Geometry of Submanifolds (Dover Edition), Dover Publications, Mineola, NY, 2019.
  • [41] Chen, B.-Y., Choi, M., Kim, Y. H.: Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), 447–455.
  • [42] Chen, B.-Y., Dillen, F., Verstraelen, L.: Finite type space curves, Soochow J. Math. 12 (1986), 1–10.
  • [43] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447–453.
  • [44] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Curves of finite type, Geometry & Topology of Submanifolds 2 (1990), 76–110.
  • [45] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: A variational minimal principle characterizes submanifolds of finite type, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 961–965.
  • [46] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: A variational minimal principle and its applications, Kyungpook Math. J. 35(3) (1995), 435–444.
  • [47] Chen, B.-Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
  • [48] Chen, B.-Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998), 1–18.
  • [49] Chen, B.-Y., Lue, H. S.: Spherical submanifolds with finite type spherical Gauss map, J. Korean Math. Soc. 44 (2007), 407–442.
  • [50] Chen, B.-Y., Morvan, J. M., Nore, T.: Energie, tension et order des applications a valeurs dans un espace euclidien, C. R. Math. Acad. Sc. Paris, 301 (1985), 123–126.
  • [51] Chen, B.-Y., Morvan, J. M., Nore, T.: Energy, tension and finite type maps, Kodai Math. J. 9 (1986), 406–418.
  • [52] Chen, B.-Y., Munteanu, M. I.: Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geom. Appl. 31 (2013), 1–16.
  • [53] Chen, B.-Y., Ogiue, K.: On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
  • [54] Chen, B.-Y., Petrovic, M.: On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc. 44(1) (1991), 117–129.
  • [55] Chen, B.-Y., Piccinni, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161–186.
  • [56] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.
  • [57] Choi, M., Kim, D.-S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), 215–223.
  • [58] Choi, M., Kim, Y. H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), 753–761.
  • [59] Choi, M., Kim, Y. H., Yoon, D. W.: Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 15 (2011), 1141–1161.
  • [60] Choi, M., Yoon, D. W.: Surfaces of revolution with pointwise 1-type Gauss map in pseudo-Galilean space, Bull. Korean Math. Soc. 53 (2016), 519–530.
  • [61] Choi, S. M., Ki, U-H., Suh, Y. J.: Space-like surfaces with 1-type generalized Gauss map, J. Korean Math. Soc. 35 (1998), 315–330.
  • [62] Choi, S. M., Ki, U-H., Yoon, D. W.: Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 14 (2010), 1297–1308.
  • [63] Choi, M., Kim, D.-S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46(1) (2009), 215–223.
  • [64] Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990), 10–21.
  • [65] Dimitrić, I.: Quadric representation and submanifold of finite type, Doctoral Thesis, Michigan State University, 1989.
  • [66] Dimitrić, I.: Spherical submanifolds with low type quadric representation, Tokyo J. Math. 13 (1990), 469–492.
  • [67] Dimitrić, I.: 1-type submanifolds of the complex projective space, Kodai Math. J. 14 (1991), 281–295.
  • [68] Dimitrić, I.: Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20 (1992), 53–65.
  • [69] Dimitrić, I.: Quadric representation of a submanifold, Proc. Amer. Math. Soc. 114 (1992), 201–210 .
  • [70] Dimitrić, I.: 1-type submanifolds of non-Euclidean complex space forms, Bull. Belg. Math. Soc. Simon Stevin, 4 (1997), 673–684.
  • [71] Dimitrić, I.: CR-submanifolds of HPm and hypersurfaces of the Cayley plane whose Chen-type is 1, Kyungpook Math. J. 40 (2000), 407–429.
  • [72] Dimitrićc, I.: Low-type submanifolds of real space forms via the immersions by projectors, Differential Geom. Appl. 27 (2009), 507–526.
  • [73] Dimitrić, I.: Hopf hypersurfaces of low type in non-flat complex space forms, Kodai Math. J. 34 (2011), 202–243.
  • [74] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11 (2007), 1407–1416.
  • [75] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58 (2009), 146–161.
  • [76] Dursun, U.: Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. 33 (2010), 469–478.
  • [77] Dursun, U.: Hypersurfaces of hyperbolic space with 1-type Gauss map, The International Conference Differential Geometry and Dynamical Systems (DGDS-2010), 47–55, BSG Proc. 18, Geom. Balkan Press, Bucharest, 2011.
  • [78] Dursun, U.: On spacelike rotational surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 52(1) (2015), 301–312.
  • [79] Dursun, U., Arsan, G. G.: Surfaces in the Euclidean space E4 with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40 (2011), 617–625.
  • [80] Dursun, U., Bekta¸s, B.: Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E41 with pointwise1-type Gauss map, Math. Phys. Anal. Geom. 17 (2014), 247–263.
  • [81] Dursun, U., Co¸skun, E.: Flat surfaces in the Minkowski space E31 with pointwise 1-type Gauss map, Turkish J. Math. 36 (2012), 613–629.
  • [82] Dursun, U., Turgay, N. C.: General rotational surfaces in Euclidean space E4 with pointwise 1-type Gauss map, Math. Commun. 17 (2012), 71–81.
  • [83] Dursun, U., Turgay, N. C.: On space-like surfaces in Minkowski 4-space with pointwise 1-type Gauss map of the second kind, Balkan J. Geom. Appl. 17(2) (2012), 34–45.
  • [84] Dursun, U., Turgay, N. C.: Space-like surfaces in Minkowski space E41with pointwise 1-type Gauss map, Ukrain. Mat. Zh. 71 (2019), 59–72.
  • [85] Ejiri, N.: Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759–763.
  • [86] Ganchev, G., Milousheva, V.: Invariants and Bonnet-type theorem for surfaces in R4, Cent. Eur. J. Math., 8(6) (2010), 993–1008.
  • [87] Garay, O. J.: An extension of Takahashi’s theorem, Geom. Dedicata 34(2) (1990), 105–112.
  • [88] Garay, O. J., Romero, A.: An isometric embedding of the complex hyperbolic space in a pseudo-Euclidean space and its application to the study of real hypersurfaces, Tsukuba J. Math. 14 (1990), 293–313.
  • [89] Gauss, C. F.: Disquisitiones generales circa superficies curvas, Comment. Soc. Sci. Gotting. Recent. Classis Math. 6 (1827).
  • [90] Germain, S.: Mémoire sur la coubure des surfaces, J. Reine Angrew. Math. 7 (1831), 1–29.
  • [91] Güler, E.: Helical hypersurfaces in Minkowski geometry E41 , Symmetry 12(8) (2020), 1206.
  • [92] Güler, E.: Generalized helical hypersurfaces having time-like axis in Minkowski spacetime, Universe 8(9) (2022), 469.
  • [93] Güler, E., Hacısaliho˘ glu, H. H., Kim, Y. H.: The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space, Symmetry 10 (2018), no 9, 398.
  • [94] Güler, E., Magid, M., Yaylı, Y.: Laplace–Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys. 41 (2016), 77–95.
  • [95] Güler, E., Turgay, N. C.: Cheng–Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math. 16 (2019), 66.
  • [96] Güler, E. and Turgay, N. C.: Rotational hypersurfaces satisfying Ln−3G = AGin the n-dimensional Euclidean space. arXiv:2104.03915v1 [math.DG]
  • [97] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Bi-rotational hypersurface satisfying ΔIIIx = Ax in 4-space. Honam Math. J. 44(2) (2022), 219–230.
  • [98] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space E4, Turkish J. Math. 46(6) (2022), 2167–2177.
  • [99] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Bi-rotational hypersurface satisfying Δx = Ax in pseudo-Euclidean space E42 , TWMS J. PureAppl. Math. (in press).
  • [100] Ishihara, T.: The harmonic Gauss maps in a generalized sense, J. London Math. Soc. 26 (1982) 104–112.
  • [101] Jang, C.: Surfaces with 1-type Gauss map, Kodai Math. J. 19 (1996), 388–394.
  • [102] Jang, C., Park, K.: Surfaces of 1-type Gauss map with flat normal connection, Commun. Korean Math. Soc. 14 (1999), 189–200.
  • [103] Jang, K. O., Kim, Y. H.: 2-type surfaces with 1-type Gauss map, Commun. Korean Math. Soc. 12 (1997), 79–86.
  • [104] Jin, M. H., Pei, D. H.: The timelike axis surface of revolution with pointwise 1-type Gauss map in Minkowski 3-space, (Chinese) J. Shandong Univ. Nat. Sci. 48 (2013), 57–61.
  • [105] Jung, S. M., Kim, D.-S., Kim, Y. H.: Spherical hypersurfaces associated with the spherical Gauss map and Gauss map, Publ. Math. (Debrecen) 100 (2022), 473–486.
  • [106] Kahraman Aksoyak, F., Yaylı, Y.: Boost invariant surfaces with pointwise 1-type Gauss map in Minkowski 4-space E41 , Bull. Korean Math. Soc. 51 (2014), 1863–1874.
  • [107] Kahraman Aksoyak, F., Yaylı, Y.: General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E42 , Indian J. Pure Appl. Math. 46 (2015), 107–118.
  • [108] Kahraman Aksoyak, F., Yaylı, Y.: Flat rotational surfaces with pointwise 1-type Gauss map in E4, Honam Math. J. 38(2) (2016), 305–316.
  • [109] Kahraman Aksoyak, F., Yaylı, Y.: Flat rotational surfaces with pointwise 1-type Gauss map via generalized quaternions, Proc. Nat. Acad. Sci. India Sect. A 90 (2020), 251–257.
  • [110] Kaya, O., Önder, M.: On special developable ruled surfaces with pointwise 1-type Gauss map, Miskolc Math. Notes 22 (2021), 709–720.
  • [111] Ki, U-H., Kim, D.-S., Kim, Y. H., Roh, Y.-M.: Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), 317–338.
  • [112] Kim, D.-S.: Surfaces with pointwise 1-type Gauss map of the second kind, J. Korean Soc. Math. Edu. Ser. B Pure Appl. Math. 19 (2012), 229–237.
  • [113] Kim, D.-S., Kim, Y. H.: Shape operator and Gauss map of pointwise 1-type, J. Korean Math. Soc. 52(6) (2015), 1337–1346.
  • [114] Kim, D.-S., Kim, J. R., Kim, Y. H.: Cheng–Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc. 39 (2016) 1319–1327.
  • [115] Kim, Y. H., Turgay, N. C.: Surfaces in E3 with L1-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), 935–949.
  • [116] Kim, Y. H., Turgay, N. C.: Classifications of helicoidal surfaces with L1-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), 1345–1356.
  • [117] Kim, Y. H., Turgay, N. C.: On pointwise 1-type Gauss map of surfaces in E31 concerning Cheng-Yau operator, J. Korean Math. Soc. 54 (2017), 381–397.
  • [118] Kim, Y. H., Turgay, N. C.: On the ruled surfaces with L1-pointwise 1-type Gauss map, Kyungpook Math. J. 57 (2017), 133–144.
  • [119] Kim, Y. H., Yoon, D. W.: Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), 191–205.
  • [120] Kim, Y. H., Yoon, D. W.: Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004) 379–396.
  • [121] Kişi, İ.., Öztürk, G.: A new type of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space E4, J. Korean Math. Soc. 55 (2018), 923–938.
  • [122] Kişi, İ.., Öztürk, G.: Spherical product surface having pointwise 1-type Gauss map in Galilean 3-space G3, Int. J. Geom. Methods Mod. Phys. 16(12) (2019), 1950186, 10 pp.
  • [123] Kişi, İ.., Öztürk, G.: Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space, Int. Electron. J. Geom. 12(2) (2019), 202–209.
  • [124] Kişi, İ.., Öztürk, G.: Classifications of tubular surface with L1-pointwise 1-type Gauss map in Galilean 3-space G3. Kyungpook Math. J. 62(1) (2022), 167–177.
  • [125] Kobayashi, S.: Isometric imbeddings of compact symmetric spaces, Tohoku Math. J. 20 (1968), 21–25.
  • [126] Lashof, R. K., Smale, S.: On the immersions of manifolds in Euclidean spaces, Ann. Math. 68 (1958), 562–583.
  • [127] Lawson, H. B.: Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [128] Li, Y., Eren, K., Ayvaci, K. H., Ersoy, S.: The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Math. 8(1) (2023), 2226–2239.
  • [129] Milousheva, V., Turgay, N. C.: Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space, J. Geom. Phys. 106 (2016), 171–183.
  • [130] Mohammadpouri, A.: Rotational hypersurfaces with Lr-pointwise 1-type Gauss map, Bol. Soc. Parana. Mat. 36 (2018), 207–217.
  • [131] Mohammadpouri, A.: Hypersurfaces with Lr-pointwise 1-type Gauss map, Zh. Mat. Fiz. Anal. Geom. 14 (2018), 67–77.
  • [132] Nagano, T.: On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers College Gen. Edu. Univ. Tokyo 11 (1961), 177–182.
  • [133] Niang, A.: On rotation surfaces in the Minkowski 3-dimensional space with pointwise 1-type Gauss map, J. Korean Math. Soc. 41 (2004), 1007–1021.
  • [134] Niang, A.: Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42(1) (2005), 23–27.
  • [135] Obata, M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature, J. Differential Geometry 2 (1968), 217–223.
  • [136] O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, NY, 1983.
  • [137] Ou, Y.-L., Chen, B.-Y.: Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry,World Scientific, Hackensack, NJ, 2020.
  • [138] Pavković, B. J., Kamenarovi´c, I.: The equiform differential geometry of curves in the Galilean space, Glas. Mat. Ser. III 22(42) (1987), 449–457.
  • [139] Pavković, B. J.: The general solution of the Frenet system of differential equations for curves in the Galilean space G3, Rad Jugoslav. Akad. Znan. Umjet. 450 (1990), 123–128.
  • [140] Qian, J., Kim, Y. H.: Classifications of canal surfaces with L1-pointwise 1-type Gauss map, Milan J. Math. 83 (2015), 145–155.
  • [141] Qian, J., Su, M., Kim, Y. H.: Canal surfaces with generalized 1-type Gauss map, Rev. Un. Mat. Argentina 62 (2021), 199–211.
  • [142] Ros, A.: Spectral geometry of CR-minimal submanifolds in the complex projective space, Kodai Math. J. 6 (1983) 88-99.
  • [143] Ros, A.: On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433–447.
  • [144] Smale, S.: The classification of immersions of spheres in Euclidean spaces, Ann. Math. 69 (1959), 327–344.
  • [145] Stamatakis, S., Al-Zoubi, H.: On surfaces of finite Chen-type, Results Math. 43 (2003), 181–190.
  • [146] Tai, S. S.: Minimum imbeddings of compact symmetric spaces of rank one, J. Differential Geometry, 2 (1968) 55–66. [147] Takahashi, T.: Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.
  • [148] Thurston, W.: Three Dimensional Geometry and Topology, Princeton Math. Ser. 35. Princeton University Press, Princeton, 1997.
  • [149] Tunçer, Y., Karacan, M. K., Yoon, D. W.: On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space, Kyungpook Math. J. 62 (2022), 497–507.
  • [150] Turgay, N. C.: On the quasi-minimal surfaces in the 4-dimensional de Sitter space with 1-type Gauss map, Sarajevo J. Math. 11(23) (2015), 109–116.
  • [151] Turgay, N. C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space, J. Australian. Math. Soc. 99 (2015), 415–427.
  • [152] Turgay, N. C.: On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativity Gravitation 46 (2014), Art. 1621, 17 pp.
  • [153] Wu, B.-Y.: 1-type minimal surfaces in complex Grassmann manifolds and its Gauss map, Tsukuba J. Math. 26 (2002), 49–60. [154] Yeğin, R., Dursun, U.: On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map, Zh. Mat. Fiz. Anal. Geom. 12 (2016), 315–337.
  • [155] Yıldırım, M.: On tensor product surfaces of Lorentzian planar curves with pointwise 1-type Gauss map, Int. Electron. J. Geom. 9(2) (2016), 21–26.
  • [156] Yoon, D. W.: On the Gauss Map of Tubular Surfaces in Galilean 3-space, Intern. J. Math. Anal. 8(45) (2014), 2229–2238.
  • [157] Yoon, D. W.: Invariant surfaces with pointwise 1-type Gauss map in Sol3, J. Geom. 106 (2015), 503–512.
  • [158] Yoon, D.W., Kim, Y. H., Jung, J. S.: Rotation surfaces with L1-pointwise 1-type Gauss map in pseudo-Galilean space, Ann. Polon. Math. 113 (2015), 255–267.
  • [159] Yoon, D.W., Kim, D.-S., Kim, Y. H., Lee, J.W.: Classifications of flat surfaces with generalized 1-type Gauss map in L3, Mediterr. J. Math. 15 (3)(2018), Paper No. 78, 16 pp.
Year 2023, , 4 - 47, 30.04.2023
https://doi.org/10.36890/iejg.1216024

Abstract

References

  • [1] Arslan, K., Bulca, B., Kılıç, B., Kim, Y. H., Murathan, C., Öztürk, G.: Tensor product surfaces with pointwise 1-type Gauss map, Bull.Korean Math. Soc. 48(3) (2011), 601–609.
  • [2] Arslan, K., Bayram, B. K., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Vranceanu surface in $E^4$ with pointwise 1-type Gauss map,Indian J. Pure Appl. Math. 42(1) (2011), 41–51.
  • [3] Arslan, K., Bayram, K. B., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Rotational embeddings in $E^4$ with pointwise 1-type Gauss map, Turkish J. Math. 35(3) (2011), 493–499.
  • [4] Arslan, K., Bulca, B., Milousheva, V.: Meridian surfaces in $E^4$ with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 51 (2014),911–922.
  • [5] Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math. 20 (2016), 311–332.
  • [6] Baikoussis, C., Blair, D. E.: Finite type integral submanifolds of the contact manifold $R^{2n+1}$(−3), Bull. Inst. Math. Acad. Sinica 19 (1991),327–350.
  • [7] Baikoussis, C., Chen, B.-Y., Verstraelen, L.: Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), 341–349.
  • [8] Baikoussis, C., Verstraelen, L.: The Chen-type of the spiral surfaces, Results Math. 28 (1995), 214–223.
  • [9] Barros, M., Chen, B.-Y., Urbano, F.: Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4 (1981), 399–417.
  • [10] Bejancu, A.: CR submanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978), 135–142.
  • [11] Bektaş, B., Canfes, E. Ö., Dursun, U.: On rotational surfaces in pseudo-Euclidean space E4t with pointwise 1-type Gauss map, Acta Univ.Apulensis Math. Inform. No. 45 (2016), 43–59.
  • [12] Bektaş, B., Canfes, E. Ö., Dursun, U.: Pseudo-spherical submanifolds with 1-type pseudo-spherical Gauss map, Results Math. 71(3-4)(2017), 867–887.
  • [13] Bektaş, B., Dursun, U.: Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E41 with pointwise 1-type Gauss map, Filomat 29 (2015), 381–392.
  • [14] Bektaş, B., Dursun, U.: On spherical submanifolds with finite type spherical Gauss map, Adv. Geom. 16 (2016), 243–251.
  • [15] Bektaş, B., Van der Veken, J., Vrancken, L.: Surfaces in a pseudo-sphere with harmonic or 1-type pseudo-spherical Gauss map, Ann. Global Anal. Geom. 52 (2017), 45–55.
  • [16] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edition, Birkhäuser Boston, Inc., MA , 2010.
  • [17] Brada, C., Niglio, L.: Connected compact minimal Chen-type-1 submanifolds of the Grassmannian manifolds, Bull. Soc. Math. Belg. Sér. B 44 (1992), 299–310.
  • [18] Canfes, E. Ö., Turgay, N. C.: On the Gauss map of minimal Lorentzian surfaces in 4-dimensional semi-Riemannian space forms with index 2, Publ. Math. (Debrecen) 91 (2017), 349–367.
  • [19] Chen, B.-Y.: On the surfaces with parallel mean curvature vector, Indiana Univ. Math. J. 22(7) (1972), 655–666.
  • [20] Chen, B.-Y.: On the total curvature of immersed manifolds, IV: Spectrum and total mean curvature. Bull. Inst. Math. Acad. Sinica 7 (1979), 301–311.
  • [21] Chen, B.-Y.: On the total curvature of immersed manifolds VI: Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11(3) (1983), 309–328.
  • [22] Chen, B.-Y.: Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
  • [23] Chen, B.Y.: Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), 358–374.
  • [24] Chen, B.-Y.: Finite type pseudo-Riemannian submanifolds, Tamkang J. Math.17(2) (1986), 137–151.
  • [25] Chen, B.-Y.: Surfaces of finite type in Euclidean 3-space, Bull. Belg. Math. Soc. Simon Stevin 39 (1987), 243–254.
  • [26] Chen, B.-Y.: Null 2-type surfaces in E3 are circular cylinders, Kodai Math. J. 11 (1988), 295–299.
  • [27] Chen, B.-Y.: Null 2-type surfaces in Euclidean space, in: Algebra, analysis and geometry (Taipei, 1988), 1–18,World Scientific, River Edge, NJ (1989).
  • [28] Chen, B.-Y.: Slant immersions, Bull. Aust. Math. Soc. 41(1) (1990), 135–147.
  • [29] Chen, B.-Y.: Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Belgium, 1990.
  • [30] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169–188.
  • [31] Chen, B.-Y.: Linearly independent, orthogonal and equivariant immersions, Kodai Math. J. 14(3) (1991), 341–349.
  • [32] Chen, B.-Y.: Submanifolds of finite type in hyperbolic spaces, Taiwanese J. Math. 20 (1992), 5–21.
  • [33] Chen, B.-Y.: A report of submanifolds of finite type, Soochow J. Math. 22 (1996), 117–337.
  • [34] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. 26 (2000), 105–127.
  • [35] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math. 5 (2001), 681–723.
  • [36] Chen, B.-Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific Publishing, Hackensack, NJ, 2011.
  • [37] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45(1) (2014), 87–108.
  • [38] Chen, B.-Y.: Total Mean Curvature and Submanifolds of Finite Type (2nd Edition), World Scientific Publishing, Hackensack, NJ, 2015.
  • [39] Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific Publishing, Hackensack, NJ, 2017.
  • [40] Chen, B.-Y.: Geometry of Submanifolds (Dover Edition), Dover Publications, Mineola, NY, 2019.
  • [41] Chen, B.-Y., Choi, M., Kim, Y. H.: Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), 447–455.
  • [42] Chen, B.-Y., Dillen, F., Verstraelen, L.: Finite type space curves, Soochow J. Math. 12 (1986), 1–10.
  • [43] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447–453.
  • [44] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Curves of finite type, Geometry & Topology of Submanifolds 2 (1990), 76–110.
  • [45] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: A variational minimal principle characterizes submanifolds of finite type, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 961–965.
  • [46] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: A variational minimal principle and its applications, Kyungpook Math. J. 35(3) (1995), 435–444.
  • [47] Chen, B.-Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
  • [48] Chen, B.-Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998), 1–18.
  • [49] Chen, B.-Y., Lue, H. S.: Spherical submanifolds with finite type spherical Gauss map, J. Korean Math. Soc. 44 (2007), 407–442.
  • [50] Chen, B.-Y., Morvan, J. M., Nore, T.: Energie, tension et order des applications a valeurs dans un espace euclidien, C. R. Math. Acad. Sc. Paris, 301 (1985), 123–126.
  • [51] Chen, B.-Y., Morvan, J. M., Nore, T.: Energy, tension and finite type maps, Kodai Math. J. 9 (1986), 406–418.
  • [52] Chen, B.-Y., Munteanu, M. I.: Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geom. Appl. 31 (2013), 1–16.
  • [53] Chen, B.-Y., Ogiue, K.: On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
  • [54] Chen, B.-Y., Petrovic, M.: On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc. 44(1) (1991), 117–129.
  • [55] Chen, B.-Y., Piccinni, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161–186.
  • [56] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.
  • [57] Choi, M., Kim, D.-S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), 215–223.
  • [58] Choi, M., Kim, Y. H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), 753–761.
  • [59] Choi, M., Kim, Y. H., Yoon, D. W.: Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 15 (2011), 1141–1161.
  • [60] Choi, M., Yoon, D. W.: Surfaces of revolution with pointwise 1-type Gauss map in pseudo-Galilean space, Bull. Korean Math. Soc. 53 (2016), 519–530.
  • [61] Choi, S. M., Ki, U-H., Suh, Y. J.: Space-like surfaces with 1-type generalized Gauss map, J. Korean Math. Soc. 35 (1998), 315–330.
  • [62] Choi, S. M., Ki, U-H., Yoon, D. W.: Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 14 (2010), 1297–1308.
  • [63] Choi, M., Kim, D.-S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46(1) (2009), 215–223.
  • [64] Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990), 10–21.
  • [65] Dimitrić, I.: Quadric representation and submanifold of finite type, Doctoral Thesis, Michigan State University, 1989.
  • [66] Dimitrić, I.: Spherical submanifolds with low type quadric representation, Tokyo J. Math. 13 (1990), 469–492.
  • [67] Dimitrić, I.: 1-type submanifolds of the complex projective space, Kodai Math. J. 14 (1991), 281–295.
  • [68] Dimitrić, I.: Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20 (1992), 53–65.
  • [69] Dimitrić, I.: Quadric representation of a submanifold, Proc. Amer. Math. Soc. 114 (1992), 201–210 .
  • [70] Dimitrić, I.: 1-type submanifolds of non-Euclidean complex space forms, Bull. Belg. Math. Soc. Simon Stevin, 4 (1997), 673–684.
  • [71] Dimitrić, I.: CR-submanifolds of HPm and hypersurfaces of the Cayley plane whose Chen-type is 1, Kyungpook Math. J. 40 (2000), 407–429.
  • [72] Dimitrićc, I.: Low-type submanifolds of real space forms via the immersions by projectors, Differential Geom. Appl. 27 (2009), 507–526.
  • [73] Dimitrić, I.: Hopf hypersurfaces of low type in non-flat complex space forms, Kodai Math. J. 34 (2011), 202–243.
  • [74] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11 (2007), 1407–1416.
  • [75] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58 (2009), 146–161.
  • [76] Dursun, U.: Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. 33 (2010), 469–478.
  • [77] Dursun, U.: Hypersurfaces of hyperbolic space with 1-type Gauss map, The International Conference Differential Geometry and Dynamical Systems (DGDS-2010), 47–55, BSG Proc. 18, Geom. Balkan Press, Bucharest, 2011.
  • [78] Dursun, U.: On spacelike rotational surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 52(1) (2015), 301–312.
  • [79] Dursun, U., Arsan, G. G.: Surfaces in the Euclidean space E4 with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40 (2011), 617–625.
  • [80] Dursun, U., Bekta¸s, B.: Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space E41 with pointwise1-type Gauss map, Math. Phys. Anal. Geom. 17 (2014), 247–263.
  • [81] Dursun, U., Co¸skun, E.: Flat surfaces in the Minkowski space E31 with pointwise 1-type Gauss map, Turkish J. Math. 36 (2012), 613–629.
  • [82] Dursun, U., Turgay, N. C.: General rotational surfaces in Euclidean space E4 with pointwise 1-type Gauss map, Math. Commun. 17 (2012), 71–81.
  • [83] Dursun, U., Turgay, N. C.: On space-like surfaces in Minkowski 4-space with pointwise 1-type Gauss map of the second kind, Balkan J. Geom. Appl. 17(2) (2012), 34–45.
  • [84] Dursun, U., Turgay, N. C.: Space-like surfaces in Minkowski space E41with pointwise 1-type Gauss map, Ukrain. Mat. Zh. 71 (2019), 59–72.
  • [85] Ejiri, N.: Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759–763.
  • [86] Ganchev, G., Milousheva, V.: Invariants and Bonnet-type theorem for surfaces in R4, Cent. Eur. J. Math., 8(6) (2010), 993–1008.
  • [87] Garay, O. J.: An extension of Takahashi’s theorem, Geom. Dedicata 34(2) (1990), 105–112.
  • [88] Garay, O. J., Romero, A.: An isometric embedding of the complex hyperbolic space in a pseudo-Euclidean space and its application to the study of real hypersurfaces, Tsukuba J. Math. 14 (1990), 293–313.
  • [89] Gauss, C. F.: Disquisitiones generales circa superficies curvas, Comment. Soc. Sci. Gotting. Recent. Classis Math. 6 (1827).
  • [90] Germain, S.: Mémoire sur la coubure des surfaces, J. Reine Angrew. Math. 7 (1831), 1–29.
  • [91] Güler, E.: Helical hypersurfaces in Minkowski geometry E41 , Symmetry 12(8) (2020), 1206.
  • [92] Güler, E.: Generalized helical hypersurfaces having time-like axis in Minkowski spacetime, Universe 8(9) (2022), 469.
  • [93] Güler, E., Hacısaliho˘ glu, H. H., Kim, Y. H.: The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space, Symmetry 10 (2018), no 9, 398.
  • [94] Güler, E., Magid, M., Yaylı, Y.: Laplace–Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys. 41 (2016), 77–95.
  • [95] Güler, E., Turgay, N. C.: Cheng–Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math. 16 (2019), 66.
  • [96] Güler, E. and Turgay, N. C.: Rotational hypersurfaces satisfying Ln−3G = AGin the n-dimensional Euclidean space. arXiv:2104.03915v1 [math.DG]
  • [97] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Bi-rotational hypersurface satisfying ΔIIIx = Ax in 4-space. Honam Math. J. 44(2) (2022), 219–230.
  • [98] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space E4, Turkish J. Math. 46(6) (2022), 2167–2177.
  • [99] Güler, E., Yaylı, Y., Hacısaliho˘ glu, H. H.: Bi-rotational hypersurface satisfying Δx = Ax in pseudo-Euclidean space E42 , TWMS J. PureAppl. Math. (in press).
  • [100] Ishihara, T.: The harmonic Gauss maps in a generalized sense, J. London Math. Soc. 26 (1982) 104–112.
  • [101] Jang, C.: Surfaces with 1-type Gauss map, Kodai Math. J. 19 (1996), 388–394.
  • [102] Jang, C., Park, K.: Surfaces of 1-type Gauss map with flat normal connection, Commun. Korean Math. Soc. 14 (1999), 189–200.
  • [103] Jang, K. O., Kim, Y. H.: 2-type surfaces with 1-type Gauss map, Commun. Korean Math. Soc. 12 (1997), 79–86.
  • [104] Jin, M. H., Pei, D. H.: The timelike axis surface of revolution with pointwise 1-type Gauss map in Minkowski 3-space, (Chinese) J. Shandong Univ. Nat. Sci. 48 (2013), 57–61.
  • [105] Jung, S. M., Kim, D.-S., Kim, Y. H.: Spherical hypersurfaces associated with the spherical Gauss map and Gauss map, Publ. Math. (Debrecen) 100 (2022), 473–486.
  • [106] Kahraman Aksoyak, F., Yaylı, Y.: Boost invariant surfaces with pointwise 1-type Gauss map in Minkowski 4-space E41 , Bull. Korean Math. Soc. 51 (2014), 1863–1874.
  • [107] Kahraman Aksoyak, F., Yaylı, Y.: General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E42 , Indian J. Pure Appl. Math. 46 (2015), 107–118.
  • [108] Kahraman Aksoyak, F., Yaylı, Y.: Flat rotational surfaces with pointwise 1-type Gauss map in E4, Honam Math. J. 38(2) (2016), 305–316.
  • [109] Kahraman Aksoyak, F., Yaylı, Y.: Flat rotational surfaces with pointwise 1-type Gauss map via generalized quaternions, Proc. Nat. Acad. Sci. India Sect. A 90 (2020), 251–257.
  • [110] Kaya, O., Önder, M.: On special developable ruled surfaces with pointwise 1-type Gauss map, Miskolc Math. Notes 22 (2021), 709–720.
  • [111] Ki, U-H., Kim, D.-S., Kim, Y. H., Roh, Y.-M.: Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), 317–338.
  • [112] Kim, D.-S.: Surfaces with pointwise 1-type Gauss map of the second kind, J. Korean Soc. Math. Edu. Ser. B Pure Appl. Math. 19 (2012), 229–237.
  • [113] Kim, D.-S., Kim, Y. H.: Shape operator and Gauss map of pointwise 1-type, J. Korean Math. Soc. 52(6) (2015), 1337–1346.
  • [114] Kim, D.-S., Kim, J. R., Kim, Y. H.: Cheng–Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc. 39 (2016) 1319–1327.
  • [115] Kim, Y. H., Turgay, N. C.: Surfaces in E3 with L1-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), 935–949.
  • [116] Kim, Y. H., Turgay, N. C.: Classifications of helicoidal surfaces with L1-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), 1345–1356.
  • [117] Kim, Y. H., Turgay, N. C.: On pointwise 1-type Gauss map of surfaces in E31 concerning Cheng-Yau operator, J. Korean Math. Soc. 54 (2017), 381–397.
  • [118] Kim, Y. H., Turgay, N. C.: On the ruled surfaces with L1-pointwise 1-type Gauss map, Kyungpook Math. J. 57 (2017), 133–144.
  • [119] Kim, Y. H., Yoon, D. W.: Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), 191–205.
  • [120] Kim, Y. H., Yoon, D. W.: Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004) 379–396.
  • [121] Kişi, İ.., Öztürk, G.: A new type of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space E4, J. Korean Math. Soc. 55 (2018), 923–938.
  • [122] Kişi, İ.., Öztürk, G.: Spherical product surface having pointwise 1-type Gauss map in Galilean 3-space G3, Int. J. Geom. Methods Mod. Phys. 16(12) (2019), 1950186, 10 pp.
  • [123] Kişi, İ.., Öztürk, G.: Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space, Int. Electron. J. Geom. 12(2) (2019), 202–209.
  • [124] Kişi, İ.., Öztürk, G.: Classifications of tubular surface with L1-pointwise 1-type Gauss map in Galilean 3-space G3. Kyungpook Math. J. 62(1) (2022), 167–177.
  • [125] Kobayashi, S.: Isometric imbeddings of compact symmetric spaces, Tohoku Math. J. 20 (1968), 21–25.
  • [126] Lashof, R. K., Smale, S.: On the immersions of manifolds in Euclidean spaces, Ann. Math. 68 (1958), 562–583.
  • [127] Lawson, H. B.: Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [128] Li, Y., Eren, K., Ayvaci, K. H., Ersoy, S.: The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Math. 8(1) (2023), 2226–2239.
  • [129] Milousheva, V., Turgay, N. C.: Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space, J. Geom. Phys. 106 (2016), 171–183.
  • [130] Mohammadpouri, A.: Rotational hypersurfaces with Lr-pointwise 1-type Gauss map, Bol. Soc. Parana. Mat. 36 (2018), 207–217.
  • [131] Mohammadpouri, A.: Hypersurfaces with Lr-pointwise 1-type Gauss map, Zh. Mat. Fiz. Anal. Geom. 14 (2018), 67–77.
  • [132] Nagano, T.: On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers College Gen. Edu. Univ. Tokyo 11 (1961), 177–182.
  • [133] Niang, A.: On rotation surfaces in the Minkowski 3-dimensional space with pointwise 1-type Gauss map, J. Korean Math. Soc. 41 (2004), 1007–1021.
  • [134] Niang, A.: Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42(1) (2005), 23–27.
  • [135] Obata, M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature, J. Differential Geometry 2 (1968), 217–223.
  • [136] O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, NY, 1983.
  • [137] Ou, Y.-L., Chen, B.-Y.: Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry,World Scientific, Hackensack, NJ, 2020.
  • [138] Pavković, B. J., Kamenarovi´c, I.: The equiform differential geometry of curves in the Galilean space, Glas. Mat. Ser. III 22(42) (1987), 449–457.
  • [139] Pavković, B. J.: The general solution of the Frenet system of differential equations for curves in the Galilean space G3, Rad Jugoslav. Akad. Znan. Umjet. 450 (1990), 123–128.
  • [140] Qian, J., Kim, Y. H.: Classifications of canal surfaces with L1-pointwise 1-type Gauss map, Milan J. Math. 83 (2015), 145–155.
  • [141] Qian, J., Su, M., Kim, Y. H.: Canal surfaces with generalized 1-type Gauss map, Rev. Un. Mat. Argentina 62 (2021), 199–211.
  • [142] Ros, A.: Spectral geometry of CR-minimal submanifolds in the complex projective space, Kodai Math. J. 6 (1983) 88-99.
  • [143] Ros, A.: On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433–447.
  • [144] Smale, S.: The classification of immersions of spheres in Euclidean spaces, Ann. Math. 69 (1959), 327–344.
  • [145] Stamatakis, S., Al-Zoubi, H.: On surfaces of finite Chen-type, Results Math. 43 (2003), 181–190.
  • [146] Tai, S. S.: Minimum imbeddings of compact symmetric spaces of rank one, J. Differential Geometry, 2 (1968) 55–66. [147] Takahashi, T.: Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.
  • [148] Thurston, W.: Three Dimensional Geometry and Topology, Princeton Math. Ser. 35. Princeton University Press, Princeton, 1997.
  • [149] Tunçer, Y., Karacan, M. K., Yoon, D. W.: On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space, Kyungpook Math. J. 62 (2022), 497–507.
  • [150] Turgay, N. C.: On the quasi-minimal surfaces in the 4-dimensional de Sitter space with 1-type Gauss map, Sarajevo J. Math. 11(23) (2015), 109–116.
  • [151] Turgay, N. C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space, J. Australian. Math. Soc. 99 (2015), 415–427.
  • [152] Turgay, N. C.: On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativity Gravitation 46 (2014), Art. 1621, 17 pp.
  • [153] Wu, B.-Y.: 1-type minimal surfaces in complex Grassmann manifolds and its Gauss map, Tsukuba J. Math. 26 (2002), 49–60. [154] Yeğin, R., Dursun, U.: On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map, Zh. Mat. Fiz. Anal. Geom. 12 (2016), 315–337.
  • [155] Yıldırım, M.: On tensor product surfaces of Lorentzian planar curves with pointwise 1-type Gauss map, Int. Electron. J. Geom. 9(2) (2016), 21–26.
  • [156] Yoon, D. W.: On the Gauss Map of Tubular Surfaces in Galilean 3-space, Intern. J. Math. Anal. 8(45) (2014), 2229–2238.
  • [157] Yoon, D. W.: Invariant surfaces with pointwise 1-type Gauss map in Sol3, J. Geom. 106 (2015), 503–512.
  • [158] Yoon, D.W., Kim, Y. H., Jung, J. S.: Rotation surfaces with L1-pointwise 1-type Gauss map in pseudo-Galilean space, Ann. Polon. Math. 113 (2015), 255–267.
  • [159] Yoon, D.W., Kim, D.-S., Kim, Y. H., Lee, J.W.: Classifications of flat surfaces with generalized 1-type Gauss map in L3, Mediterr. J. Math. 15 (3)(2018), Paper No. 78, 16 pp.
There are 157 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Bang-yen Chen 0000-0002-1270-094X

Erhan Güler 0000-0003-3264-6239

Yusuf Yaylı 0000-0003-4398-3855

Hasan Hilmi Hacısalihoğlu 0000-0002-1465-5986

Publication Date April 30, 2023
Acceptance Date February 19, 2023
Published in Issue Year 2023

Cite

APA Chen, B.-y., Güler, E., Yaylı, Y., Hacısalihoğlu, H. H. (2023). Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map. International Electronic Journal of Geometry, 16(1), 4-47. https://doi.org/10.36890/iejg.1216024
AMA Chen By, Güler E, Yaylı Y, Hacısalihoğlu HH. Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map. Int. Electron. J. Geom. April 2023;16(1):4-47. doi:10.36890/iejg.1216024
Chicago Chen, Bang-yen, Erhan Güler, Yusuf Yaylı, and Hasan Hilmi Hacısalihoğlu. “Differential Geometry of 1-Type Submanifolds and Submanifolds With 1-Type Gauss Map”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 4-47. https://doi.org/10.36890/iejg.1216024.
EndNote Chen B-y, Güler E, Yaylı Y, Hacısalihoğlu HH (April 1, 2023) Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map. International Electronic Journal of Geometry 16 1 4–47.
IEEE B.-y. Chen, E. Güler, Y. Yaylı, and H. H. Hacısalihoğlu, “Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 4–47, 2023, doi: 10.36890/iejg.1216024.
ISNAD Chen, Bang-yen et al. “Differential Geometry of 1-Type Submanifolds and Submanifolds With 1-Type Gauss Map”. International Electronic Journal of Geometry 16/1 (April 2023), 4-47. https://doi.org/10.36890/iejg.1216024.
JAMA Chen B-y, Güler E, Yaylı Y, Hacısalihoğlu HH. Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map. Int. Electron. J. Geom. 2023;16:4–47.
MLA Chen, Bang-yen et al. “Differential Geometry of 1-Type Submanifolds and Submanifolds With 1-Type Gauss Map”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 4-47, doi:10.36890/iejg.1216024.
Vancouver Chen B-y, Güler E, Yaylı Y, Hacısalihoğlu HH. Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map. Int. Electron. J. Geom. 2023;16(1):4-47.

Cited By