Research Article
BibTex RIS Cite

A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension

Year 2023, , 653 - 664, 29.10.2023
https://doi.org/10.36890/iejg.1263203

Abstract

IIn this paper, we examine PNMCV-MCGL biconservative submanifold in a Minkowski space $\mathbb{E}_1^{n+2}$ with nondiagonalizable shape operator, where PNMCV-MCGL submanifold denotes a submanifold with parallel normalized mean curvature
vector and the mean curvature whose gradient is lightlike ($\langle\nabla H,\nabla H\rangle=0$). We obtain some conditions about connection forms, principal curvatures and some results about them. Then we use them to obtain a classification of such submanifolds. Finally, we showed that there is no biconservative such submanifold in Minkowski space of arbitrary dimension.

Project Number

yok

References

  • [1] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in the three-dimensional space forms with divergence-free stress-bienergy tensor. Annali di Matematica Pura ed Applicata 193, 529–550 (2014).
  • [2] Chen, B. Y. : On the surface with parallel mean curvature vector. Indiana University Mathematics Journal. 22, 655-666 (1973).
  • [3] Chen, B.Y.: Surfaces with parallel normalized mean curvature vector. Monatshefte für Mathematik. 90, 185-194 (1980).
  • [4] Chen, B.Y.: Some open problems and conjectures on submanifold of finite type . Soochow Journal of Mathematics. 17, 169-188 (1991).
  • [5] Chen, B.Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 2 (45), 323-347 (1991).
  • [6] Chen, B.Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 52, 167-185 (1998).
  • [7] Chen, B.Y.: Chen’s biharmonic conjecture and submanifolds with parallel normalized mean curvature vector. Mathematics. 7, 710 (2019).
  • [8] Du L., Zhang, J.: Biharmonic Submanifolds with Parallel Normalized Mean Curvature Vector Field in Pseudo-Riemannian Space Forms. Bulletin of the Malaysian Mathematical Sciences Society. 42, 1469-1484 (2019).
  • [9] Du, L.: Classification of f-biharmonic submanifolds in Lorentz space forms. Open Mathematics. 19, 1299-1314 (2021).
  • [10] Fu, Y.: Explicit classification of biconservative surfaces in Lorentz 3-space forms. Annali di Matematica Pura ed Applicata. 194, 805-822 (2015).
  • [11] Fu, Y.: On bi-conservative surfaces in Minkowski 3-space. Journal of Geometry and Physics. 66, 71-79 (2013).
  • [12] Magid, M. A.: Lorentzian Isoparametric Hypersurfaces. Pacific Journal of Mathematics. 118, 165-197 (1995).
  • [13] Montaldo, S., Oniciuc C., Ratto, A. :, Biconservative surfaces. Journal of Geometric Analysis. 26, 313-329 (2016).
  • [14] Montaldo, S., Oniciuc C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Annali di Matematica Pura ed Applicata. 195, 403-422 (2016).
  • [15]Şen, R.: Biconservative Submanifolds with Parallel Normalized Mean Curvature Vector Field in Euclidean Space. Bulletin of the Iranian Mathematical Society. 48, 3185-3194 (2022).
  • [16]Şen, R., Turgay, N.C.: Biharmonic PNMCV submanifolds in Euclidean 5-space, Turkish Journal of Mathematics. 47 , 296-316 (2023).
  • [17] Turgay, N.C.: A classifcation of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. 45, 1125-1134 (2016).
Year 2023, , 653 - 664, 29.10.2023
https://doi.org/10.36890/iejg.1263203

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • [1] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in the three-dimensional space forms with divergence-free stress-bienergy tensor. Annali di Matematica Pura ed Applicata 193, 529–550 (2014).
  • [2] Chen, B. Y. : On the surface with parallel mean curvature vector. Indiana University Mathematics Journal. 22, 655-666 (1973).
  • [3] Chen, B.Y.: Surfaces with parallel normalized mean curvature vector. Monatshefte für Mathematik. 90, 185-194 (1980).
  • [4] Chen, B.Y.: Some open problems and conjectures on submanifold of finite type . Soochow Journal of Mathematics. 17, 169-188 (1991).
  • [5] Chen, B.Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 2 (45), 323-347 (1991).
  • [6] Chen, B.Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu Journal of Mathematics. 52, 167-185 (1998).
  • [7] Chen, B.Y.: Chen’s biharmonic conjecture and submanifolds with parallel normalized mean curvature vector. Mathematics. 7, 710 (2019).
  • [8] Du L., Zhang, J.: Biharmonic Submanifolds with Parallel Normalized Mean Curvature Vector Field in Pseudo-Riemannian Space Forms. Bulletin of the Malaysian Mathematical Sciences Society. 42, 1469-1484 (2019).
  • [9] Du, L.: Classification of f-biharmonic submanifolds in Lorentz space forms. Open Mathematics. 19, 1299-1314 (2021).
  • [10] Fu, Y.: Explicit classification of biconservative surfaces in Lorentz 3-space forms. Annali di Matematica Pura ed Applicata. 194, 805-822 (2015).
  • [11] Fu, Y.: On bi-conservative surfaces in Minkowski 3-space. Journal of Geometry and Physics. 66, 71-79 (2013).
  • [12] Magid, M. A.: Lorentzian Isoparametric Hypersurfaces. Pacific Journal of Mathematics. 118, 165-197 (1995).
  • [13] Montaldo, S., Oniciuc C., Ratto, A. :, Biconservative surfaces. Journal of Geometric Analysis. 26, 313-329 (2016).
  • [14] Montaldo, S., Oniciuc C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Annali di Matematica Pura ed Applicata. 195, 403-422 (2016).
  • [15]Şen, R.: Biconservative Submanifolds with Parallel Normalized Mean Curvature Vector Field in Euclidean Space. Bulletin of the Iranian Mathematical Society. 48, 3185-3194 (2022).
  • [16]Şen, R., Turgay, N.C.: Biharmonic PNMCV submanifolds in Euclidean 5-space, Turkish Journal of Mathematics. 47 , 296-316 (2023).
  • [17] Turgay, N.C.: A classifcation of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. 45, 1125-1134 (2016).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Aykut Kayhan 0000-0001-8984-8291

Project Number yok
Early Pub Date October 19, 2023
Publication Date October 29, 2023
Acceptance Date June 11, 2023
Published in Issue Year 2023

Cite

APA Kayhan, A. (2023). A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension. International Electronic Journal of Geometry, 16(2), 653-664. https://doi.org/10.36890/iejg.1263203
AMA Kayhan A. A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension. Int. Electron. J. Geom. October 2023;16(2):653-664. doi:10.36890/iejg.1263203
Chicago Kayhan, Aykut. “A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 653-64. https://doi.org/10.36890/iejg.1263203.
EndNote Kayhan A (October 1, 2023) A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension. International Electronic Journal of Geometry 16 2 653–664.
IEEE A. Kayhan, “A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 653–664, 2023, doi: 10.36890/iejg.1263203.
ISNAD Kayhan, Aykut. “A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension”. International Electronic Journal of Geometry 16/2 (October 2023), 653-664. https://doi.org/10.36890/iejg.1263203.
JAMA Kayhan A. A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension. Int. Electron. J. Geom. 2023;16:653–664.
MLA Kayhan, Aykut. “A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 653-64, doi:10.36890/iejg.1263203.
Vancouver Kayhan A. A Classification of Parallel Normalized Biconservative Submanifold in the Minkowski Space in Arbitrary Dimension. Int. Electron. J. Geom. 2023;16(2):653-64.