Research Article
BibTex RIS Cite

A New Representation for Slant Curves in Sasakian 3-Manifolds

Year 2024, , 277 - 289, 23.04.2024
https://doi.org/10.36890/iejg.1397659

Abstract

In this paper, we define a new kind of curve called $N$-slant curve whose principal normal vector field makes a constant angle with the Reeb vector field $\xi$ in Sasakian $3$-manifolds. Then, we give some characterizations of $N$-slant curves in Sasakian $3$-manifolds and we obtain some properties of the curves in $\mathbb{R}^{3}(-3)$. Moreover, we investigate the conditions of $C$-parallel and $C$-proper mean curvature vector fields along $N$-slant curves in Sasakian $3$-manifolds. Finally, we study $N$-slant curves of type $AW(k)$ where k=1,2 or 3.

References

  • [1] Ahmad, T.A, Turgut, M.: Some characterizations of slant helices in the Euclidean space En . Hacettepe Journal of Mathematics and Statistics. 39, 327–336 (2010).
  • [2] Altunkaya, B.: Slant Helices that Constructed from Hyperspherical Curves in the n-dimensional Euclidean Space. International Electronic Journal of Geometry. 12(2), 229–240 (2019).
  • [3] Arslan, K., West, A.: Product submanifols with pointwise 3-Planar normal sections. Glasgow Math. J. 37, 73–81 (1995).
  • [4] Arslan, K., Özgür, C.: Curves and surfaces of AW(k) typ. Geometry and Topology of Submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), World Sci. Publishing, River Edge, NJ, 21-26 (1999). https://doi.org/10.1142/9789812817976-0003.
  • [5] Baikoussis, C., Blair, D.E.: On Legendre curves in contact 3-manifolds. Geom. Dedicate, 49, 135-142 (1994). https://doi.org/10.1007/BF01610616
  • [6] Barros, M.: General Helices and a theorem of Lancert. Proc. Amer. Math. Soc., 125(5), 1503-1509 (1997).
  • [7] Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer, Berlin, Hiedelberg, New York, (1976).
  • [8] Blair, D.E.: Riemannian geometry of contact and simplectic manifolds. Birkhauser, Boston, (2002).
  • [9] Camcı, Ç.: Extended cross product in a 3- dimensional almost contact metric manifold with applications to curve theory. Turk. J. Math., 35, 1-14 (2011). https://doi.org/10.3906/mat-0910-103
  • [10] Chen, B.Y.: Total Mean curvature and submanifolds of finite type. Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, (1984). https://doi.org/10.1142/9237
  • [11] Cho, J.T., Inoguchi, J.-I., Lee, J.E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc., 74, 359-367 (2006). https://doi.org/10.1017/S0004972700040429
  • [12] Cho, J.T., Inoguchi, J.-I., Lee, J.E.: Biharmonic curves in 3-dimensional Sasakian space forms. Ann. Mat. Pura Appl., 186, 685-701 (2007). https://doi.org/10.1007/s10231-006-0026-x
  • [13] Cho, J.T., Lee, J.E.: Slant curves in contact Pseudo-Hermitian 3-manifolds. Bull. Austral. Math. Soc., 78, 383-396 (2008). https://doi.org/10.1017/S0004972708000737
  • [14] Inoguchi, J.-I., Lee, J.E.: On slant curves in normal almost contact metric 3-manifolds. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 55, 603-620 (2014).
  • [15] Inoguchi, J.-I., Lee, J.E.: Slant curves in 3-dimensional almost contact metric geometry. International Electronic Journal of Geometry, 8(2), 106-146 (2015).
  • [16] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk J. Math., 28, 153-163 (2004).
  • [17] Kula, L., Yaylı, Y.: On slant helix and its spherical indicatrix. Applied Mathematics and Computation 169, 600-607 (2005). https://doi.org/10.1016/j.amc.2004.09.078
  • [18] Lancret, M.A.: Mémoire sur les courbes à double courbure. Mémoires présentés à l’Institut1", 416-454 (1806).
  • [19] Lee, C. W., Lee, J. W.: Classifications of special curves in the Three-Dimensional Lie Group. International Journal of Mathematical Analysis, 10(11), 503-514 (2016).
  • [20] Lee, J.E., Suh Y.J., Lee, H.: C-parallel mean curvature vector fields along slant curves Sasakian 3-manifolds. Kyungpook Math. J., 52(1), 49-59 (2012). https://doi.org/10.5666/KMJ.2012.52.1.49
  • [21] Okuyucu, O.Z., Gök, ˙I., Yaylı,Y., Ekmekci, F.N.: Slant helices in three dimensional Lie groups. Applied Mathematics and Computation, 221, 672–683 (2013). https://doi.org/10.1016/j.amc.2013.07.008
  • [22] Olszak, Z.: Normal almost contact metric manifolds of dimension three. Annales Polonici Mathematici, 47, 41-50 (1986).
  • [23] Özgür, C., Gezgin F.: On some curves of AW (k)-type. Differ. Geom. Dyn. Syst, 7, 74-80 (2005).
  • [24] Özgür, C., Tripathi, M.M.: On Legendre curves in α − Sasakian manifolds. Bull. Malays. Math. Sci. Soc. (2), 31(1), 91-96 (2008).
  • [25] Özgür, C., Güvenç, ¸S: On some types of slant curves in contact pseudo-Hermitian 3-manifolds. Ann. Polon. Math. 104, 217-228 (2012), https://doi.org/10.4064/ap104-3-1.
  • [26] Özgür, C., Güvenç, ¸S. On some classes of curves in contact pseudo-Hermitian 3-manifolds. Riemannian Geometry and Applications, RIGA 2011 Ed. Univ. Bucure¸sti, Bucharest, 229–238 (2011).
  • [27] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88(2), 62-105 (1968). https://doi.org/10.2307/1970556
  • [28] Struik, D.J.: Lectures on Classical Differential Geometry. Dover, New-York, (1988).
  • [29] Yaylı, Y., Zıplar, E. On slant helices and general helices in Euclidean n-space. Mathematica Aeterna 1(8), 599-610 (2011).
  • [30] Yıldırım, A., On curves in 3-dimensional normal almost contact metric manifolds. Int. J. Geom. Methods M., 18(1), 2150004, (2021), https://doi.org/10.1142/S0219887821500043
  • [31] Yoon, D.W.: General helices of AW (k)-type in the Lie group. Journal of Applied Mathematics, (2012), https://doi.org/10.1155/2012/535123.
Year 2024, , 277 - 289, 23.04.2024
https://doi.org/10.36890/iejg.1397659

Abstract

References

  • [1] Ahmad, T.A, Turgut, M.: Some characterizations of slant helices in the Euclidean space En . Hacettepe Journal of Mathematics and Statistics. 39, 327–336 (2010).
  • [2] Altunkaya, B.: Slant Helices that Constructed from Hyperspherical Curves in the n-dimensional Euclidean Space. International Electronic Journal of Geometry. 12(2), 229–240 (2019).
  • [3] Arslan, K., West, A.: Product submanifols with pointwise 3-Planar normal sections. Glasgow Math. J. 37, 73–81 (1995).
  • [4] Arslan, K., Özgür, C.: Curves and surfaces of AW(k) typ. Geometry and Topology of Submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), World Sci. Publishing, River Edge, NJ, 21-26 (1999). https://doi.org/10.1142/9789812817976-0003.
  • [5] Baikoussis, C., Blair, D.E.: On Legendre curves in contact 3-manifolds. Geom. Dedicate, 49, 135-142 (1994). https://doi.org/10.1007/BF01610616
  • [6] Barros, M.: General Helices and a theorem of Lancert. Proc. Amer. Math. Soc., 125(5), 1503-1509 (1997).
  • [7] Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer, Berlin, Hiedelberg, New York, (1976).
  • [8] Blair, D.E.: Riemannian geometry of contact and simplectic manifolds. Birkhauser, Boston, (2002).
  • [9] Camcı, Ç.: Extended cross product in a 3- dimensional almost contact metric manifold with applications to curve theory. Turk. J. Math., 35, 1-14 (2011). https://doi.org/10.3906/mat-0910-103
  • [10] Chen, B.Y.: Total Mean curvature and submanifolds of finite type. Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, (1984). https://doi.org/10.1142/9237
  • [11] Cho, J.T., Inoguchi, J.-I., Lee, J.E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc., 74, 359-367 (2006). https://doi.org/10.1017/S0004972700040429
  • [12] Cho, J.T., Inoguchi, J.-I., Lee, J.E.: Biharmonic curves in 3-dimensional Sasakian space forms. Ann. Mat. Pura Appl., 186, 685-701 (2007). https://doi.org/10.1007/s10231-006-0026-x
  • [13] Cho, J.T., Lee, J.E.: Slant curves in contact Pseudo-Hermitian 3-manifolds. Bull. Austral. Math. Soc., 78, 383-396 (2008). https://doi.org/10.1017/S0004972708000737
  • [14] Inoguchi, J.-I., Lee, J.E.: On slant curves in normal almost contact metric 3-manifolds. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 55, 603-620 (2014).
  • [15] Inoguchi, J.-I., Lee, J.E.: Slant curves in 3-dimensional almost contact metric geometry. International Electronic Journal of Geometry, 8(2), 106-146 (2015).
  • [16] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk J. Math., 28, 153-163 (2004).
  • [17] Kula, L., Yaylı, Y.: On slant helix and its spherical indicatrix. Applied Mathematics and Computation 169, 600-607 (2005). https://doi.org/10.1016/j.amc.2004.09.078
  • [18] Lancret, M.A.: Mémoire sur les courbes à double courbure. Mémoires présentés à l’Institut1", 416-454 (1806).
  • [19] Lee, C. W., Lee, J. W.: Classifications of special curves in the Three-Dimensional Lie Group. International Journal of Mathematical Analysis, 10(11), 503-514 (2016).
  • [20] Lee, J.E., Suh Y.J., Lee, H.: C-parallel mean curvature vector fields along slant curves Sasakian 3-manifolds. Kyungpook Math. J., 52(1), 49-59 (2012). https://doi.org/10.5666/KMJ.2012.52.1.49
  • [21] Okuyucu, O.Z., Gök, ˙I., Yaylı,Y., Ekmekci, F.N.: Slant helices in three dimensional Lie groups. Applied Mathematics and Computation, 221, 672–683 (2013). https://doi.org/10.1016/j.amc.2013.07.008
  • [22] Olszak, Z.: Normal almost contact metric manifolds of dimension three. Annales Polonici Mathematici, 47, 41-50 (1986).
  • [23] Özgür, C., Gezgin F.: On some curves of AW (k)-type. Differ. Geom. Dyn. Syst, 7, 74-80 (2005).
  • [24] Özgür, C., Tripathi, M.M.: On Legendre curves in α − Sasakian manifolds. Bull. Malays. Math. Sci. Soc. (2), 31(1), 91-96 (2008).
  • [25] Özgür, C., Güvenç, ¸S: On some types of slant curves in contact pseudo-Hermitian 3-manifolds. Ann. Polon. Math. 104, 217-228 (2012), https://doi.org/10.4064/ap104-3-1.
  • [26] Özgür, C., Güvenç, ¸S. On some classes of curves in contact pseudo-Hermitian 3-manifolds. Riemannian Geometry and Applications, RIGA 2011 Ed. Univ. Bucure¸sti, Bucharest, 229–238 (2011).
  • [27] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88(2), 62-105 (1968). https://doi.org/10.2307/1970556
  • [28] Struik, D.J.: Lectures on Classical Differential Geometry. Dover, New-York, (1988).
  • [29] Yaylı, Y., Zıplar, E. On slant helices and general helices in Euclidean n-space. Mathematica Aeterna 1(8), 599-610 (2011).
  • [30] Yıldırım, A., On curves in 3-dimensional normal almost contact metric manifolds. Int. J. Geom. Methods M., 18(1), 2150004, (2021), https://doi.org/10.1142/S0219887821500043
  • [31] Yoon, D.W.: General helices of AW (k)-type in the Lie group. Journal of Applied Mathematics, (2012), https://doi.org/10.1155/2012/535123.
There are 31 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Osman Ateş 0000-0002-8727-3735

İsmail Gök 0000-0001-8407-133X

Yusuf Yaylı 0000-0003-4398-3855

Early Pub Date April 17, 2024
Publication Date April 23, 2024
Submission Date November 29, 2023
Acceptance Date January 25, 2024
Published in Issue Year 2024

Cite

APA Ateş, O., Gök, İ., & Yaylı, Y. (2024). A New Representation for Slant Curves in Sasakian 3-Manifolds. International Electronic Journal of Geometry, 17(1), 277-289. https://doi.org/10.36890/iejg.1397659
AMA Ateş O, Gök İ, Yaylı Y. A New Representation for Slant Curves in Sasakian 3-Manifolds. Int. Electron. J. Geom. April 2024;17(1):277-289. doi:10.36890/iejg.1397659
Chicago Ateş, Osman, İsmail Gök, and Yusuf Yaylı. “A New Representation for Slant Curves in Sasakian 3-Manifolds”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 277-89. https://doi.org/10.36890/iejg.1397659.
EndNote Ateş O, Gök İ, Yaylı Y (April 1, 2024) A New Representation for Slant Curves in Sasakian 3-Manifolds. International Electronic Journal of Geometry 17 1 277–289.
IEEE O. Ateş, İ. Gök, and Y. Yaylı, “A New Representation for Slant Curves in Sasakian 3-Manifolds”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 277–289, 2024, doi: 10.36890/iejg.1397659.
ISNAD Ateş, Osman et al. “A New Representation for Slant Curves in Sasakian 3-Manifolds”. International Electronic Journal of Geometry 17/1 (April 2024), 277-289. https://doi.org/10.36890/iejg.1397659.
JAMA Ateş O, Gök İ, Yaylı Y. A New Representation for Slant Curves in Sasakian 3-Manifolds. Int. Electron. J. Geom. 2024;17:277–289.
MLA Ateş, Osman et al. “A New Representation for Slant Curves in Sasakian 3-Manifolds”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 277-89, doi:10.36890/iejg.1397659.
Vancouver Ateş O, Gök İ, Yaylı Y. A New Representation for Slant Curves in Sasakian 3-Manifolds. Int. Electron. J. Geom. 2024;17(1):277-89.