We in this current article introduce and characterize a $K$-Ricci-Bourguignon almost solitons in perfect fluid spacetimes and generalized Robertson-Walker spacetimes. First, we demonstrate that if a perfect fluid spacetime admits a $K$-Ricci-Bourguignon almost soliton, then the integral curves produced by the velocity vector field are geodesics and the acceleration vector vanishes. Then we establish that if perfect fluid spacetimes permit a gradient $K$-Ricci-Bourguignon soliton with Killing velocity vector field, then either state equation of the perfect fluid spacetime is presented by $p=\frac{3-n}{n-1}\sigma$ , or the gradient $K$-Ricci-Bourguignon soliton is shrinking or expanding under some condition. Moreover, we illustrate that the spacetime represents a perfect fluid spacetime and the divergence of the Weyl tensor vanishes if a generalized Robertson-Walker spacetime admits a $K$-Ricci-Bourguignon almost soliton.
[1] Alías, L., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-
Walker spacetimes. Gen. Relativ. Gravit. 27, 71-84 (1995).
[2] Aubin, T.: Métriques riemanniennes et courbure. J. Differential Geometry. 4, 383–424 (1970).
[3] Barton, G.: Introduction to the Relativity Principle. John Wiley & Sons Inc. (1999).
[4] Blaga, A.M.: Solitons and geometrical structures in a perfect fluid spacetime. Rocky Mountain J. Math. 50, 41-43 (2020).
[5] Bourguignon, J.P.: Ricci curvature and Einstein metrics. Global differential geometry and global analysis. 42–63 (1981).
[6] Brozos-Vazquez, M., Garcia-Rio, E., Vazquez-Lorenzo, R.: Some remarks on locally conformally flat static space–times. Journal of
Mathematical Physics. 46, 022501 (2005).
[8] Chavanis, P.H.: Cosmology with a stiff matter era. Phys. Rev. D. 92, 103004 (2015).
[9] Chen, B.Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific. (2011).
[10] Chen, B.Y.: A simple characterization of generalized Robertson-Walker spacetimes. Gen. Relativ. Gravit. 46, 1833 (2014).
[11] Chen, B.Y.: Some results on concircular vector felds and their applications to Ricci solitons. Bull. Korean Math. Soc. 52, 1535–1547 (2015).
[12] Chen, B.Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. Balkan J. Geom. Appl. 20, 14-25 (2015).
[13] De, K., De, U.C.: Investigation on gradient solitons in perfect fluid spacetimes. Reports on Math. Phys. 91, 277-289 (2023).
[14] De, K., De, U.C.: Ricci-Yamabe solitons in f(R)-gravity. International Electronic Journal of Geometry. 16 (1), 334-342 (2023).
[15] De, K., De, U.C., Gezer, A.: Perfect fluid spacetimes and k-almost Yamabe solitons. Turk J Math. 47, 1236-1246 (2023) .
[16] De, K., Khan, M.N., De, U.C.: Characterizations of GRW spacetimes concerning gradient solitons. heliyon (2024).
http://dx.doi.org/10.1016/j.heliyon.2024.e25702
[17] De, K., De, U.C., Syied, A.A., Turki, N.B., Alsaeed, S.: Perfect Fluid Spacetimes and Gradient Solitons. Journal of Nonlinear Mathematical
Physics. 29, 843-858 (2022).
[18] De, U.C., Mantica, C.A., Suh, Y.J.: Perfect Fluid Spacetimes and Gradient Solitons. Filomat. 36, 829-842 (2022).
[19] Duggal, K.L., Sharma, R.: Symmetries of spacetimes and Riemannian manifolds. 487, Kluwer Academic Press, Boston, London (1999).
[21] Hamilton, R.S.: The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. 71, 237-262 (1998).
[22] Hervik, S., Ortaggio, M., Wylleman, L.: Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension. Class.
Quantum Grav. 30, 165014 (2013).
[23] Lovelock, D., Rund, H.: Tensors, differential forms, and variational principles, Courier Corporation. (1989).
[25] Mantica, C.A., Molinari, L.G.: On the Weyl and the Ricci tensors of generalized Robertson–Walker spacetimes. J. Math. Phys. 57 (10),
102502 (2016).
[26] Sánchez, M.: On the geometry of generalized Robertson–Walker spacetimes: Curvature and killing fields. Gen. Relativ. Gravit. 31, 1-15
(1999).
[27] Stephani, H., Kramer, D., Mac-Callum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University
Press. Cambridge, (2009).
[1] Alías, L., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-
Walker spacetimes. Gen. Relativ. Gravit. 27, 71-84 (1995).
[2] Aubin, T.: Métriques riemanniennes et courbure. J. Differential Geometry. 4, 383–424 (1970).
[3] Barton, G.: Introduction to the Relativity Principle. John Wiley & Sons Inc. (1999).
[4] Blaga, A.M.: Solitons and geometrical structures in a perfect fluid spacetime. Rocky Mountain J. Math. 50, 41-43 (2020).
[5] Bourguignon, J.P.: Ricci curvature and Einstein metrics. Global differential geometry and global analysis. 42–63 (1981).
[6] Brozos-Vazquez, M., Garcia-Rio, E., Vazquez-Lorenzo, R.: Some remarks on locally conformally flat static space–times. Journal of
Mathematical Physics. 46, 022501 (2005).
[8] Chavanis, P.H.: Cosmology with a stiff matter era. Phys. Rev. D. 92, 103004 (2015).
[9] Chen, B.Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific. (2011).
[10] Chen, B.Y.: A simple characterization of generalized Robertson-Walker spacetimes. Gen. Relativ. Gravit. 46, 1833 (2014).
[11] Chen, B.Y.: Some results on concircular vector felds and their applications to Ricci solitons. Bull. Korean Math. Soc. 52, 1535–1547 (2015).
[12] Chen, B.Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. Balkan J. Geom. Appl. 20, 14-25 (2015).
[13] De, K., De, U.C.: Investigation on gradient solitons in perfect fluid spacetimes. Reports on Math. Phys. 91, 277-289 (2023).
[14] De, K., De, U.C.: Ricci-Yamabe solitons in f(R)-gravity. International Electronic Journal of Geometry. 16 (1), 334-342 (2023).
[15] De, K., De, U.C., Gezer, A.: Perfect fluid spacetimes and k-almost Yamabe solitons. Turk J Math. 47, 1236-1246 (2023) .
[16] De, K., Khan, M.N., De, U.C.: Characterizations of GRW spacetimes concerning gradient solitons. heliyon (2024).
http://dx.doi.org/10.1016/j.heliyon.2024.e25702
[17] De, K., De, U.C., Syied, A.A., Turki, N.B., Alsaeed, S.: Perfect Fluid Spacetimes and Gradient Solitons. Journal of Nonlinear Mathematical
Physics. 29, 843-858 (2022).
[18] De, U.C., Mantica, C.A., Suh, Y.J.: Perfect Fluid Spacetimes and Gradient Solitons. Filomat. 36, 829-842 (2022).
[19] Duggal, K.L., Sharma, R.: Symmetries of spacetimes and Riemannian manifolds. 487, Kluwer Academic Press, Boston, London (1999).
[21] Hamilton, R.S.: The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. 71, 237-262 (1998).
[22] Hervik, S., Ortaggio, M., Wylleman, L.: Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension. Class.
Quantum Grav. 30, 165014 (2013).
[23] Lovelock, D., Rund, H.: Tensors, differential forms, and variational principles, Courier Corporation. (1989).
[25] Mantica, C.A., Molinari, L.G.: On the Weyl and the Ricci tensors of generalized Robertson–Walker spacetimes. J. Math. Phys. 57 (10),
102502 (2016).
[26] Sánchez, M.: On the geometry of generalized Robertson–Walker spacetimes: Curvature and killing fields. Gen. Relativ. Gravit. 31, 1-15
(1999).
[27] Stephani, H., Kramer, D., Mac-Callum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University
Press. Cambridge, (2009).
De, U., & De, K. (2024). $K$-Ricci-Bourguignon Almost Solitons. International Electronic Journal of Geometry, 17(1), 63-71. https://doi.org/10.36890/iejg.1434598
AMA
De U, De K. $K$-Ricci-Bourguignon Almost Solitons. Int. Electron. J. Geom. April 2024;17(1):63-71. doi:10.36890/iejg.1434598
Chicago
De, U.c., and Krishnendu De. “$K$-Ricci-Bourguignon Almost Solitons”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 63-71. https://doi.org/10.36890/iejg.1434598.
EndNote
De U, De K (April 1, 2024) $K$-Ricci-Bourguignon Almost Solitons. International Electronic Journal of Geometry 17 1 63–71.
IEEE
U. De and K. De, “$K$-Ricci-Bourguignon Almost Solitons”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 63–71, 2024, doi: 10.36890/iejg.1434598.
ISNAD
De, U.c. - De, Krishnendu. “$K$-Ricci-Bourguignon Almost Solitons”. International Electronic Journal of Geometry 17/1 (April 2024), 63-71. https://doi.org/10.36890/iejg.1434598.
JAMA
De U, De K. $K$-Ricci-Bourguignon Almost Solitons. Int. Electron. J. Geom. 2024;17:63–71.
MLA
De, U.c. and Krishnendu De. “$K$-Ricci-Bourguignon Almost Solitons”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 63-71, doi:10.36890/iejg.1434598.
Vancouver
De U, De K. $K$-Ricci-Bourguignon Almost Solitons. Int. Electron. J. Geom. 2024;17(1):63-71.