avatar
U.c. De Prof. Dr. University of Calcutta
Publication 23 Review 17 CrossRef Cited 34 TR Dizin Cited 8
23 Publication
17 Review
34 CrossRef Cited
8 TR Dizin Cited

Research Fields

Mathematical Sciences

Institution

University of Calcutta

Popular Publications

0

1

447

Publications

0

386

0

177

0

594

$K$-Ricci-Bourguignon Almost Solitons
DOI: 10.36890/iejg.1434598
FAVORITE 0 TOTAL DOWNLOAD COUNT 648

0

648

0

925

0

515

Ricci-Yamabe Solitons in f(R)-gravity
DOI: 10.36890/iejg.1234057
FAVORITE 0 TOTAL DOWNLOAD COUNT 998

0

998

m-quasi Einstein Metric and Paracontact Geometry
DOI: 10.36890/iejg.1100147
FAVORITE 0 TOTAL DOWNLOAD COUNT 1152

0

1152

0

1392

0

888

0

724

Generalized Ricci Solitons on K-contact manifolds
DOI: 10.36753/mathenot.683478
FAVORITE 0 TOTAL DOWNLOAD COUNT 781

0

781

0

727

0

676

0

1233

0

708

On a Subclass of (k, µ)-Contact Metric Manifolds
Authors: U.c. De , Srimayee Samui
DOI: 10.36753/mathenot.421477
FAVORITE 0 TOTAL DOWNLOAD COUNT 619

0

619

ON 3-DIMENSIONAL $\alpha$-PARA KENMOTSU MANIFOLDS
DOI: -
FAVORITE 0 TOTAL DOWNLOAD COUNT 1241

0

1241

0

565

0

337

On Ø-symmetric Kenmotsu manifolds
DOI: -
FAVORITE 0 TOTAL DOWNLOAD COUNT 689

0

689

Publications

2

0

594

$K$-Ricci-Bourguignon Almost Solitons
DOI: 10.36890/iejg.1434598
CITED 1 FAVORITE 0 TOTAL DOWNLOAD COUNT 648

1

0

648

2

0

515

Ricci-Yamabe Solitons in f(R)-gravity
DOI: 10.36890/iejg.1234057
CITED 8 FAVORITE 0 TOTAL DOWNLOAD COUNT 998

8

0

998

3

0

1392

3

0

888

A Note on Gradient Solitons in Three-Dimensional Riemannian Manifolds
DOI: 10.36890/iejg.831078
CITED 1 FAVORITE 0 TOTAL DOWNLOAD COUNT 724

1

0

724

Generalized Ricci Solitons on K-contact manifolds
DOI: 10.36753/mathenot.683478
CITED 4 FAVORITE 0 TOTAL DOWNLOAD COUNT 781

4

0

781

1

0

727

6

0

1233

On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions
DOI: 10.36890/iejg.584599
CITED 3 FAVORITE 0 TOTAL DOWNLOAD COUNT 565

3

0

565

Interactive Guide Tool
If you want to see the panel introduction, you can click Start Tour.