Miao-Tam Equation and Ricci Solitons on Three-Dimensional Trans-Sasakian Generalized Sasakian Space-Forms
Year 2024,
, 1 - 11, 18.03.2024
Uday Chand De
,
Tarak Mandal
,
Avijit Sarkar
Abstract
The aim of the present article is to characterize some properties of the Miao-Tam equation on three-dimensional generalized Sasakian space-forms with trans-Sasakian structures. It has been proved that in such space-forms if the Miao-Tam equation admits non-trivial solution, then the metric of the space form must be a gradient Ricci soliton. We have derived that a non-trivial solution of the Fischer-Marsden equation does not exist on the said space-forms. We have also investigated certain features of Ricci solitons and gradient Ricci solitons. At the end of the article, we construct an example to verify the obtained results.
References
- [1] X. Chen, On almost f -cosymplectic manifolds satisfying the Miao-Tam equation, J. Geom., 111 (2020), Article No 28.
- [2] A. Barros, E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr., 287 (2014), 1618–1623.
- [3] A. Besse, Einstein Manifolds, Springer-Verlag, New York, (2008).
- [4] A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mexicana, 26 (2020), 1289–1299.
- [5] A. Ghosh, D. S. Patra, Certain almost Kenmotsu metrics satisfying the Miao-Tam equation, arXiv:1701.04996v1[Math.DG], (2017).
- [6] A. Ghosh, D. S. Patra, The critical point equation and contact geometry, arXiv:1711.05935v1[Math.DG], (2017).
- [7] T. Mandal, Miao-Tam equation on almost coK¨ahler manifolds, Commun. Korean Math. Soc., 37 (2022), 881–891.
- [8] T. Mandal, Miao-Tam equation on normal almost contact metric manifolds, Differ. Geom.-Dyn. Syst., 23 (2021), 135–143.
- [9] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical condition, Ann. Polon. Math., 116 (2016), 263–271.
- [10] A. Sarkar, G. G. Biswas, Critical point equation on K-paracontact manifolds, Balkan J. Geom. Appl., 5 (2020), 117–126.
- [11] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE., 36(2009), 141–171.
- [12] A. E. Fischer, J. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Am. Math. Soc., 80 (1974), 479–484.
- [13] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Jpn., 34 (1982), 665–675.
- [14] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261.
- [15] B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Contemp. Math., 674 (2016), 27–39.
- [16] A. Sarkar, G. G. Biswas, Ricci soliton on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat., 31 (2020), 455–463.
- [17] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca., 67 (2017), 979–984.
- [18] Y. Wang, Ricci solitons on almost coK¨ahler manifolds, Cand. Math. Bull., 62 (2019), 912–922.
- [19] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157–183.
- [20] P. Alegre, A. Carriazo, Structures on generalized Sasakian space forms, Differential Geom. Appl., 26(6) (2008), 656–666.
- [21] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math., 141 (2004), 157–183.
- [22] P. Alegre, A. Carriazo, C. O¨ zgu¨r, S. Sular, New examples of Generalized Sasakian space-forms, Proc. Est. Acad. Sci., 60 (2011), 251–257.
- [23] U. C. De , A. Sarkar, Some results on generalized Sasakian Space-forms, Thai. J. Math., 8 (2010), 1–10.
- [24] U. K. Kim, Conformally flat generalized Sasakian space-forms and locally symmetric generalized Sasakian space-forms, Note Mat., 26 (2006), 55–67.
- [25] A. Sarkar, M. Sen, Locally f-symmetric generalized generalized Sasakian space-forms, Ukr. Math. J., 65 (2014), 1588–1597.
- [26] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 19 (1995), 189–214.
- [27] D. E. Blair, T. Koufogiorgos, R. Sharma, A classification of 3-dimensional contact metric manifolds with Qf = fQ, Kodai Math. J., 13(1990), 391–401.
- [28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debreceen, 32 (1985), 187–193.
- [29] U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247–255.
- [30] S. Deshmukh, M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca, 63 (2013), 1361–1370.
- [31] Y. Wang, W. Wang, A Remark on trans-Sasakian 3-manifolds, Rev. de la Union Mat. Argentina, 60 (2019), 257–264.
- [32] S. Deshmukh, F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2099–2104.
- [33] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2951–2958.
- [34] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203 (2010), Birkhauser, New York.
- [35] S. Tanno, Some transformations on manifolds with almost contact and contact metric structure II, Tohoku Math. J., 15 (1963), 322–331.
- [36] D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar., 76(2) (2017), 1–10.
Year 2024,
, 1 - 11, 18.03.2024
Uday Chand De
,
Tarak Mandal
,
Avijit Sarkar
References
- [1] X. Chen, On almost f -cosymplectic manifolds satisfying the Miao-Tam equation, J. Geom., 111 (2020), Article No 28.
- [2] A. Barros, E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr., 287 (2014), 1618–1623.
- [3] A. Besse, Einstein Manifolds, Springer-Verlag, New York, (2008).
- [4] A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mexicana, 26 (2020), 1289–1299.
- [5] A. Ghosh, D. S. Patra, Certain almost Kenmotsu metrics satisfying the Miao-Tam equation, arXiv:1701.04996v1[Math.DG], (2017).
- [6] A. Ghosh, D. S. Patra, The critical point equation and contact geometry, arXiv:1711.05935v1[Math.DG], (2017).
- [7] T. Mandal, Miao-Tam equation on almost coK¨ahler manifolds, Commun. Korean Math. Soc., 37 (2022), 881–891.
- [8] T. Mandal, Miao-Tam equation on normal almost contact metric manifolds, Differ. Geom.-Dyn. Syst., 23 (2021), 135–143.
- [9] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical condition, Ann. Polon. Math., 116 (2016), 263–271.
- [10] A. Sarkar, G. G. Biswas, Critical point equation on K-paracontact manifolds, Balkan J. Geom. Appl., 5 (2020), 117–126.
- [11] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE., 36(2009), 141–171.
- [12] A. E. Fischer, J. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Am. Math. Soc., 80 (1974), 479–484.
- [13] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Jpn., 34 (1982), 665–675.
- [14] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261.
- [15] B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Contemp. Math., 674 (2016), 27–39.
- [16] A. Sarkar, G. G. Biswas, Ricci soliton on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat., 31 (2020), 455–463.
- [17] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca., 67 (2017), 979–984.
- [18] Y. Wang, Ricci solitons on almost coK¨ahler manifolds, Cand. Math. Bull., 62 (2019), 912–922.
- [19] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157–183.
- [20] P. Alegre, A. Carriazo, Structures on generalized Sasakian space forms, Differential Geom. Appl., 26(6) (2008), 656–666.
- [21] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math., 141 (2004), 157–183.
- [22] P. Alegre, A. Carriazo, C. O¨ zgu¨r, S. Sular, New examples of Generalized Sasakian space-forms, Proc. Est. Acad. Sci., 60 (2011), 251–257.
- [23] U. C. De , A. Sarkar, Some results on generalized Sasakian Space-forms, Thai. J. Math., 8 (2010), 1–10.
- [24] U. K. Kim, Conformally flat generalized Sasakian space-forms and locally symmetric generalized Sasakian space-forms, Note Mat., 26 (2006), 55–67.
- [25] A. Sarkar, M. Sen, Locally f-symmetric generalized generalized Sasakian space-forms, Ukr. Math. J., 65 (2014), 1588–1597.
- [26] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 19 (1995), 189–214.
- [27] D. E. Blair, T. Koufogiorgos, R. Sharma, A classification of 3-dimensional contact metric manifolds with Qf = fQ, Kodai Math. J., 13(1990), 391–401.
- [28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debreceen, 32 (1985), 187–193.
- [29] U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247–255.
- [30] S. Deshmukh, M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca, 63 (2013), 1361–1370.
- [31] Y. Wang, W. Wang, A Remark on trans-Sasakian 3-manifolds, Rev. de la Union Mat. Argentina, 60 (2019), 257–264.
- [32] S. Deshmukh, F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2099–2104.
- [33] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2951–2958.
- [34] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203 (2010), Birkhauser, New York.
- [35] S. Tanno, Some transformations on manifolds with almost contact and contact metric structure II, Tohoku Math. J., 15 (1963), 322–331.
- [36] D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar., 76(2) (2017), 1–10.