Research Article
BibTex RIS Cite

A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection

Year 2024, , 15 - 23, 23.04.2024
https://doi.org/10.36890/iejg.1440523

Abstract

In this note we propose a new sectional curvature on a Riemannian manifold endowed with a semi-symmetric non-metric connection. A Chen-Ricci inequality is proven. Some possible applications in other fields are mentioned.

Supporting Institution

Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI

Project Number

PN-III-P4-PCE-2021-1881,

References

  • [1] Agashe, N.S.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23, 399–409 (1992).
  • [2] Agashe, N.S.; Chafle, M.R.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor 55, 120–130 (1994).
  • [3] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimentions. Glasgow Math. J. 41, 33–41 (1999).
  • [4] Cimpoesu, F.; Mihai, A.: Characterizing the E ⊗ e Jahn-Teller potential energy surfaces by differential geometry tools, Symmetry 14(3), art 436 (2022).
  • [5] Friedmann, A.; Schouten, J.A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21, 211–223 (1924).
  • [6] Hayden, H.: Subspaces of a space with torsion. Proc. London Math. Soc. 34, 27–50 (1932).
  • [7] Imai, T.: Notes on semi-symmetric metric connections. Tensor 24, 293–296 (1972).
  • [8] Mihai, A.: A note on derived connections from semi-symmetric metric connections. Math. Slovaca 67(1), 221–226 (2017).
  • [9] Nakao, Z.: Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54, 261–266 (1976).
  • [10] Opozda, B.: A sectional curvature for statistical structures. Linear Alg. Appl. 497, 134–161 (2016).
  • [11] Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin (1954).
  • [12] Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Mihai, A.: The holohedrization effect in ligand field models. Symmetry 16(1), art.22 (2024).
  • [13] Yano, K.: On semi symmetric metric connection. Rev. Roum. Math. Pures Appl. 15, 1579–1591 (1970).
Year 2024, , 15 - 23, 23.04.2024
https://doi.org/10.36890/iejg.1440523

Abstract

Project Number

PN-III-P4-PCE-2021-1881,

References

  • [1] Agashe, N.S.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23, 399–409 (1992).
  • [2] Agashe, N.S.; Chafle, M.R.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor 55, 120–130 (1994).
  • [3] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimentions. Glasgow Math. J. 41, 33–41 (1999).
  • [4] Cimpoesu, F.; Mihai, A.: Characterizing the E ⊗ e Jahn-Teller potential energy surfaces by differential geometry tools, Symmetry 14(3), art 436 (2022).
  • [5] Friedmann, A.; Schouten, J.A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21, 211–223 (1924).
  • [6] Hayden, H.: Subspaces of a space with torsion. Proc. London Math. Soc. 34, 27–50 (1932).
  • [7] Imai, T.: Notes on semi-symmetric metric connections. Tensor 24, 293–296 (1972).
  • [8] Mihai, A.: A note on derived connections from semi-symmetric metric connections. Math. Slovaca 67(1), 221–226 (2017).
  • [9] Nakao, Z.: Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54, 261–266 (1976).
  • [10] Opozda, B.: A sectional curvature for statistical structures. Linear Alg. Appl. 497, 134–161 (2016).
  • [11] Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin (1954).
  • [12] Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Mihai, A.: The holohedrization effect in ligand field models. Symmetry 16(1), art.22 (2024).
  • [13] Yano, K.: On semi symmetric metric connection. Rev. Roum. Math. Pures Appl. 15, 1579–1591 (1970).
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Adela Mihai 0000-0003-2033-8394

Ion Mihai 0000-0003-3782-2983

Project Number PN-III-P4-PCE-2021-1881,
Early Pub Date April 5, 2024
Publication Date April 23, 2024
Submission Date February 20, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024

Cite

APA Mihai, A., & Mihai, I. (2024). A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. International Electronic Journal of Geometry, 17(1), 15-23. https://doi.org/10.36890/iejg.1440523
AMA Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. April 2024;17(1):15-23. doi:10.36890/iejg.1440523
Chicago Mihai, Adela, and Ion Mihai. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 15-23. https://doi.org/10.36890/iejg.1440523.
EndNote Mihai A, Mihai I (April 1, 2024) A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. International Electronic Journal of Geometry 17 1 15–23.
IEEE A. Mihai and I. Mihai, “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 15–23, 2024, doi: 10.36890/iejg.1440523.
ISNAD Mihai, Adela - Mihai, Ion. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry 17/1 (April 2024), 15-23. https://doi.org/10.36890/iejg.1440523.
JAMA Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. 2024;17:15–23.
MLA Mihai, Adela and Ion Mihai. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 15-23, doi:10.36890/iejg.1440523.
Vancouver Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. 2024;17(1):15-23.