Year 2024,
, 207 - 2012, 23.04.2024
Antonio W. Cunha
Eudes L. De Lima
,
Henrique F. De Lima
References
- [1] Alías L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200,
1637-1650 (2021).
- [2] Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, New York,
2016.
- [3] Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110-135 (1921).
- [4] Bar, C., Bessa, G.P.: Stochastic completeness and volume growth. Proc. Amer. Math. Soc. 138, 2629-2640 (2010).
- [5] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333-354
(1975).
- [6] Cunha, A.W., de Lima, E.L., Mi, R.: Some characterizations of Bach solitons via Ricci curvature. Diff. Geom. Appl. 90, article 102046 (2023).
- [7] Cunha, A.W., Griffin, E.: On non-compact gradient solitons. Ann. Global Anal. Geom. 63, article 27 (2023).
- [8] Das, S., Kar, S.: Bach flows of product manifolds. Int. J. Geom. Meth. Mod. Phys. 9, article 1250039 (2012).
- [9] Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. Festschrift on the occasion of the 70th birthday of Shmuel
Agmon, J. Anal. Math. 58, 99-119 (1992).
- [10] Émery, M.: Stochastic Calculus on Manifolds. Springer-Verlag, Berlin, 1989.
- [11] Fefferman, C., Graham, C.R.: Conformal invariants. Astérisque, tome S131, 95-116 (1985).
- [12] Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1-11 (1959).
- [13] Grigor’yan, A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1), 161-262 (1983) (in Russian), Engl. transl.:
Russian Math. Surveys 38 (1), 190-191 (1983).
- [14] Grigor’yan, A.: On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds. Mat. Sb. 128 (3), 354-363 (1985)
(in Russian), Engl. transl.: Math. USSR Sb 56, 349-358 (1987).
- [15] Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52, 1102-1108 (1988);
translation in Math. USSR-Izv. 33, 425-532 (1989).
- [16] Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am.
Math. Soc. (N.S.) 36, 135-249 (1999).
- [17] Grigor’yan, A.: Heat kernels on weighted manifolds and applications. in: The Ubiquitous Heat Kernel, in: Contemp. Math., Vol. 398 Amer.
Math. Soc., Providence, RI, 93-191 2006.
- [18] Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of the Green formula. J. Math. Pures Appl. 100,
607-632 (2013).
- [19] Ho, P.T.: Bach flow. J. Geom. Phys. 133, 1-9 (2018).
- [20] Hsu, E.P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17, 1248-1254 (1989).
- [21] Karp, L.: Subharmonic functions, harmonic mapping and isometric immersions. in: S.T. Yau (Ed.), Seminar on Differential Geometry, in: Ann.
of Math. Stud., vol. 102, Princeton University Press, 1983.
- [22] Karp, L., Li, P.: The heat equation on complete Riemannian manifolds. unpublished manuscript, (1983).
- [23] Mannheim, P.D.: Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 56, 340-445 (2006).
- [24] Mannheim, P.D., Kazanas, D.: Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relat.
Grav. 26, 337-361 (1994).
- [25] Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Amer. Math. Soc. 131, 1283-1288 (2003).
- [26] Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. American Math. Soc. 822 (2005).
- [27] Ratti, A., Rigoli, M., Setti, A.G.: On the Omori-Yau maximum principle and its application to differential equations and geometry. J. Funct. Anal.
134, 486-510 (1995).
- [28] Shin, J.: A note on gradient Bach solitons. Diff. Geom. Appl. 80, article 101842 (2022).
- [29] Stroock, D.: An Introduction to the Analysis of Paths on a Riemannian Manifold. Math. Surveys and Monographs, volume 4, American
Math. Soc (2000).
- [30] Sturm, K.Th.: Analysis on local Dirichelet spaces I. Recurrence, conservativeness and Liouville properties. J. Reine Angew. Math 456, 173-196
(1994).
- [31] Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26, 650-623 (1989).
- [32] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. In: Conference on Harmonic Analysis in Honor of Antoni
Zygmund, vols. I, II, in:Wadsworth Math. Ser., Wadsworth, Belmont, CA, 821–837 (1983).
Revisiting Gradient Bach Solitons via Maximum Principles
Year 2024,
, 207 - 2012, 23.04.2024
Antonio W. Cunha
Eudes L. De Lima
,
Henrique F. De Lima
Abstract
Supposing that the Ricci curvature has an appropriate lower bound and applying suitable maximum principles, we establish triviality results which guarantee that a gradient Bach soliton must be trivial and Bach-flat. Our approach is based on three main cores: convergence to zero at infinity, polynomial volume growth (both related to complete noncompact Riemannian manifolds) and stochastic completeness.
References
- [1] Alías L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200,
1637-1650 (2021).
- [2] Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, New York,
2016.
- [3] Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110-135 (1921).
- [4] Bar, C., Bessa, G.P.: Stochastic completeness and volume growth. Proc. Amer. Math. Soc. 138, 2629-2640 (2010).
- [5] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333-354
(1975).
- [6] Cunha, A.W., de Lima, E.L., Mi, R.: Some characterizations of Bach solitons via Ricci curvature. Diff. Geom. Appl. 90, article 102046 (2023).
- [7] Cunha, A.W., Griffin, E.: On non-compact gradient solitons. Ann. Global Anal. Geom. 63, article 27 (2023).
- [8] Das, S., Kar, S.: Bach flows of product manifolds. Int. J. Geom. Meth. Mod. Phys. 9, article 1250039 (2012).
- [9] Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. Festschrift on the occasion of the 70th birthday of Shmuel
Agmon, J. Anal. Math. 58, 99-119 (1992).
- [10] Émery, M.: Stochastic Calculus on Manifolds. Springer-Verlag, Berlin, 1989.
- [11] Fefferman, C., Graham, C.R.: Conformal invariants. Astérisque, tome S131, 95-116 (1985).
- [12] Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1-11 (1959).
- [13] Grigor’yan, A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1), 161-262 (1983) (in Russian), Engl. transl.:
Russian Math. Surveys 38 (1), 190-191 (1983).
- [14] Grigor’yan, A.: On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds. Mat. Sb. 128 (3), 354-363 (1985)
(in Russian), Engl. transl.: Math. USSR Sb 56, 349-358 (1987).
- [15] Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52, 1102-1108 (1988);
translation in Math. USSR-Izv. 33, 425-532 (1989).
- [16] Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am.
Math. Soc. (N.S.) 36, 135-249 (1999).
- [17] Grigor’yan, A.: Heat kernels on weighted manifolds and applications. in: The Ubiquitous Heat Kernel, in: Contemp. Math., Vol. 398 Amer.
Math. Soc., Providence, RI, 93-191 2006.
- [18] Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of the Green formula. J. Math. Pures Appl. 100,
607-632 (2013).
- [19] Ho, P.T.: Bach flow. J. Geom. Phys. 133, 1-9 (2018).
- [20] Hsu, E.P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17, 1248-1254 (1989).
- [21] Karp, L.: Subharmonic functions, harmonic mapping and isometric immersions. in: S.T. Yau (Ed.), Seminar on Differential Geometry, in: Ann.
of Math. Stud., vol. 102, Princeton University Press, 1983.
- [22] Karp, L., Li, P.: The heat equation on complete Riemannian manifolds. unpublished manuscript, (1983).
- [23] Mannheim, P.D.: Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 56, 340-445 (2006).
- [24] Mannheim, P.D., Kazanas, D.: Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relat.
Grav. 26, 337-361 (1994).
- [25] Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Amer. Math. Soc. 131, 1283-1288 (2003).
- [26] Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. American Math. Soc. 822 (2005).
- [27] Ratti, A., Rigoli, M., Setti, A.G.: On the Omori-Yau maximum principle and its application to differential equations and geometry. J. Funct. Anal.
134, 486-510 (1995).
- [28] Shin, J.: A note on gradient Bach solitons. Diff. Geom. Appl. 80, article 101842 (2022).
- [29] Stroock, D.: An Introduction to the Analysis of Paths on a Riemannian Manifold. Math. Surveys and Monographs, volume 4, American
Math. Soc (2000).
- [30] Sturm, K.Th.: Analysis on local Dirichelet spaces I. Recurrence, conservativeness and Liouville properties. J. Reine Angew. Math 456, 173-196
(1994).
- [31] Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26, 650-623 (1989).
- [32] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. In: Conference on Harmonic Analysis in Honor of Antoni
Zygmund, vols. I, II, in:Wadsworth Math. Ser., Wadsworth, Belmont, CA, 821–837 (1983).