Research Article
BibTex RIS Cite

A δ-Invariant for QR-Submanifolds in Quaternion Space Forms

Year 2018, , 8 - 17, 30.11.2018
https://doi.org/10.36890/iejg.545112

Abstract


References

  • [1] Al-Solamy, F., Chen, B.-Y. and Deshmukh, S., Two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math. 18 (2014), no.1, 199-217.
  • [2] Bejancu, A., QR-submanifolds of quaternion Kaehler manifolds, Chinese J. Math. 14 (1986), no. 2, 81-94.
  • [3] Chen, B.-Y., CR-submanifolds of a Kaehler manifold, J. Diff. Geom. 16 (1981), 305-323.
  • [4] Chen, B.-Y., An optimal inequality for CR-warped products in complex space forms involving CR δ--invariant, Internat. J. Math. 23 (2012), no. 3, 1250045 (17 pages).
  • [5] Macsim, G. and Mihai, A., An inequality on quaternionic CR-submanifolds, Ann. Univ. Ovidius Constan¸ta, XXVI (2018), no. 3, to appear.
  • [6] Nash, J. F., The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  • [7] Oprea, T., Optimizations on Riemannian submanifolds, Analele Univ. Buc. LIV 1 (2005), 127-136.
  • [8] Sahin, B., On QR-submanifolds of a quaternionic space forms, Turkish J. Math. 25 (2001), 413-425.
Year 2018, , 8 - 17, 30.11.2018
https://doi.org/10.36890/iejg.545112

Abstract

References

  • [1] Al-Solamy, F., Chen, B.-Y. and Deshmukh, S., Two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math. 18 (2014), no.1, 199-217.
  • [2] Bejancu, A., QR-submanifolds of quaternion Kaehler manifolds, Chinese J. Math. 14 (1986), no. 2, 81-94.
  • [3] Chen, B.-Y., CR-submanifolds of a Kaehler manifold, J. Diff. Geom. 16 (1981), 305-323.
  • [4] Chen, B.-Y., An optimal inequality for CR-warped products in complex space forms involving CR δ--invariant, Internat. J. Math. 23 (2012), no. 3, 1250045 (17 pages).
  • [5] Macsim, G. and Mihai, A., An inequality on quaternionic CR-submanifolds, Ann. Univ. Ovidius Constan¸ta, XXVI (2018), no. 3, to appear.
  • [6] Nash, J. F., The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  • [7] Oprea, T., Optimizations on Riemannian submanifolds, Analele Univ. Buc. LIV 1 (2005), 127-136.
  • [8] Sahin, B., On QR-submanifolds of a quaternionic space forms, Turkish J. Math. 25 (2001), 413-425.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gabriel Macsim This is me

Adela Mihai

Publication Date November 30, 2018
Published in Issue Year 2018

Cite

APA Macsim, G., & Mihai, A. (2018). A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry, 11(2), 8-17. https://doi.org/10.36890/iejg.545112
AMA Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. November 2018;11(2):8-17. doi:10.36890/iejg.545112
Chicago Macsim, Gabriel, and Adela Mihai. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 8-17. https://doi.org/10.36890/iejg.545112.
EndNote Macsim G, Mihai A (November 1, 2018) A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry 11 2 8–17.
IEEE G. Macsim and A. Mihai, “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 8–17, 2018, doi: 10.36890/iejg.545112.
ISNAD Macsim, Gabriel - Mihai, Adela. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11/2 (November 2018), 8-17. https://doi.org/10.36890/iejg.545112.
JAMA Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11:8–17.
MLA Macsim, Gabriel and Adela Mihai. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 8-17, doi:10.36890/iejg.545112.
Vancouver Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11(2):8-17.