Research Article
BibTex RIS Cite
Year 2020, , 87 - 93, 30.01.2020
https://doi.org/10.36890/iejg.555344

Abstract

References

  • [1] Adati, T., Miyazawa, T.: On P-Sasakian manifolds satisfying certain conditions. Tensor, N.S. 33, 173–178 (1979).
  • [2] Deshmukh S., Falleh, R. A.: Conformal vector fields and conformal transformations on a Riemannian manifold. Balkan Journal of Geometry and Its Applications. 17(1), 9–16 (2012).
  • [3] Djaa M., Elhendi M., Ouakkas, S.: On the Biharmonic Vector Fields. Turkish Journal of Mathematics. 36, 463–474 (2012).
  • [4] Baird P., Wood J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [5] Chen, B. Y.: Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujevac J. Math. 41(1), 93-103 (2017).
  • [6] Chen, B. Y.: Classification of torqued vector fields and its applications to Ricci solitons. Kragujevac J. Math. 41(2), 239–250 (2017).
  • [7] De, U. C., De, B. K.: Some properties of a semi-symmetric metric connection on a Riemannian manifold. Istanbul Univ. Fen Fak. Mat. Der. 54, 111-117 (1995).
  • [8] Eells, J., Lemaire L.: A report on harmonic maps. Bull. London Math. Soc. 16, 1–68 (1978).
  • [9] Eells, J., Lemaire L.: Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524 (1988).
  • [10] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964).
  • [11] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tˆhoku Math. J. 24, 93–103 (1972).
  • [12] Kowolik, J.: On some Riemannian manifolds admitting torse-forming vector fields. Dem. Math. 18. 3, 885-891 (1985).
  • [13] Cherif, A. M.: Some results on harmonic and bi-harmonic maps. International Journal of Geometric Methods in Modern Physics. 14 (7), (2017).
  • [14] Schouten, J. A.: Ricci-Calculus. 2nd ed. Springer-Verlag, Berlin (1954).
  • [15] Vanderwinden, A.J.: Exemples d’applcations harmoniques. PHD Thesis. Universite Libre de Bruxelles (1992).
  • [16] Wang, Z. P., Ou, Y. L., Yang, H.C.: Biharmonic maps from tori into a 2-sphere, Chin. Ann. Math. Ser. B. 39(5), 861–878 (2018).
  • [17] Xin, Y.: Geometry of harmonic maps. Fudan University, (1996).
  • [18] Yau, S. T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975).
  • [19] Yano, K.: Concircular geometry. I. Concircular transformations. Proc. Imp. Acad. Tokyo. 16, 195–200 (1940).
  • [20] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo. 20, 340–345 (1944).

Harmonic Maps and Torse-Forming Vector Fields

Year 2020, , 87 - 93, 30.01.2020
https://doi.org/10.36890/iejg.555344

Abstract

In this paper, we prove that any harmonic map from a compact orientable Riemannian manifold
without boundary (or from complete Riemannian manifold) (M, g) to Riemannian manifold (N, h)
is necessarily constant, with (N, h) admitting a torse-forming vector field satisfying some condition.

References

  • [1] Adati, T., Miyazawa, T.: On P-Sasakian manifolds satisfying certain conditions. Tensor, N.S. 33, 173–178 (1979).
  • [2] Deshmukh S., Falleh, R. A.: Conformal vector fields and conformal transformations on a Riemannian manifold. Balkan Journal of Geometry and Its Applications. 17(1), 9–16 (2012).
  • [3] Djaa M., Elhendi M., Ouakkas, S.: On the Biharmonic Vector Fields. Turkish Journal of Mathematics. 36, 463–474 (2012).
  • [4] Baird P., Wood J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [5] Chen, B. Y.: Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujevac J. Math. 41(1), 93-103 (2017).
  • [6] Chen, B. Y.: Classification of torqued vector fields and its applications to Ricci solitons. Kragujevac J. Math. 41(2), 239–250 (2017).
  • [7] De, U. C., De, B. K.: Some properties of a semi-symmetric metric connection on a Riemannian manifold. Istanbul Univ. Fen Fak. Mat. Der. 54, 111-117 (1995).
  • [8] Eells, J., Lemaire L.: A report on harmonic maps. Bull. London Math. Soc. 16, 1–68 (1978).
  • [9] Eells, J., Lemaire L.: Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524 (1988).
  • [10] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964).
  • [11] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tˆhoku Math. J. 24, 93–103 (1972).
  • [12] Kowolik, J.: On some Riemannian manifolds admitting torse-forming vector fields. Dem. Math. 18. 3, 885-891 (1985).
  • [13] Cherif, A. M.: Some results on harmonic and bi-harmonic maps. International Journal of Geometric Methods in Modern Physics. 14 (7), (2017).
  • [14] Schouten, J. A.: Ricci-Calculus. 2nd ed. Springer-Verlag, Berlin (1954).
  • [15] Vanderwinden, A.J.: Exemples d’applcations harmoniques. PHD Thesis. Universite Libre de Bruxelles (1992).
  • [16] Wang, Z. P., Ou, Y. L., Yang, H.C.: Biharmonic maps from tori into a 2-sphere, Chin. Ann. Math. Ser. B. 39(5), 861–878 (2018).
  • [17] Xin, Y.: Geometry of harmonic maps. Fudan University, (1996).
  • [18] Yau, S. T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975).
  • [19] Yano, K.: Concircular geometry. I. Concircular transformations. Proc. Imp. Acad. Tokyo. 16, 195–200 (1940).
  • [20] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo. 20, 340–345 (1944).
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ahmed Mohammed Cherif 0000-0002-6155-0976

Mustapha Djaa 0000-0002-7330-2144

Publication Date January 30, 2020
Acceptance Date November 15, 2019
Published in Issue Year 2020

Cite

APA Mohammed Cherif, A., & Djaa, M. (2020). Harmonic Maps and Torse-Forming Vector Fields. International Electronic Journal of Geometry, 13(1), 87-93. https://doi.org/10.36890/iejg.555344
AMA Mohammed Cherif A, Djaa M. Harmonic Maps and Torse-Forming Vector Fields. Int. Electron. J. Geom. January 2020;13(1):87-93. doi:10.36890/iejg.555344
Chicago Mohammed Cherif, Ahmed, and Mustapha Djaa. “Harmonic Maps and Torse-Forming Vector Fields”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 87-93. https://doi.org/10.36890/iejg.555344.
EndNote Mohammed Cherif A, Djaa M (January 1, 2020) Harmonic Maps and Torse-Forming Vector Fields. International Electronic Journal of Geometry 13 1 87–93.
IEEE A. Mohammed Cherif and M. Djaa, “Harmonic Maps and Torse-Forming Vector Fields”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 87–93, 2020, doi: 10.36890/iejg.555344.
ISNAD Mohammed Cherif, Ahmed - Djaa, Mustapha. “Harmonic Maps and Torse-Forming Vector Fields”. International Electronic Journal of Geometry 13/1 (January 2020), 87-93. https://doi.org/10.36890/iejg.555344.
JAMA Mohammed Cherif A, Djaa M. Harmonic Maps and Torse-Forming Vector Fields. Int. Electron. J. Geom. 2020;13:87–93.
MLA Mohammed Cherif, Ahmed and Mustapha Djaa. “Harmonic Maps and Torse-Forming Vector Fields”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 87-93, doi:10.36890/iejg.555344.
Vancouver Mohammed Cherif A, Djaa M. Harmonic Maps and Torse-Forming Vector Fields. Int. Electron. J. Geom. 2020;13(1):87-93.