Research Article
BibTex RIS Cite

A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds

Year 2017, , 39 - 47, 30.04.2017
https://doi.org/10.36890/iejg.584440

Abstract

References

  • [1] Agache, N. S. and Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math., 23(1992), no. 6, 399-409.
  • [2] Bejancu, A., Curvature in sub-Riemannian geometry, J. Math. Phys., 53, 023513, (2012), DOI :10.1063/1.3684957
  • [3] De, U. C. and Biswas, S. C., On a type of semi-symmetric non-metric connection on a Riemannian manifold. Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237-243.
  • [4] De, U. C. and Kamilya, D., On a type of semi-symmetric non-metric connection on a Riemannian manifold. J. Indian Inst. Sci., 75(1995), 707-710.
  • [5] Folland, G. B., Weyl manifolds. J. Diff. Geom., 4(1970), 145-153.
  • [6] Han, Y. L., Fu, F. Y. and Zhao, P. B., On semi-symmetric metric connection in sub-Riemannian manifold. Tamkang Journal of Mathematics, 47(2016), no. 4, 373-384.
  • [7] Lyra, G., Über eine modifikation der riemannschen Geometrie. Math. Z., 54(1951), 52-64.
  • [8] Montgomery, R., Abnormal minimizers. SIAM J. Control Optim., 32(1994), no. 6, 1605-1620.
  • [9] Montgomery, R., A Tour of Subriemannian geometries, Their Geodesics and Applications. Math. Surv. and Monographs, 91, AMS, 2002. [10] Sen, D. K. and Vanstone, J. R., On Weyl and Lyra manifolds. J. Math. Phys., 13(1972), 990-993.
  • [11] Tripathi, M. M. and Kakar, N., On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.
  • [12] Weyl, H., Gravitation und Elektrizltdt, S.-B. Preuss. Akad. Wiss. Berlin, p. 465. Translated in The principle of relativity, Dover Books, New York, 1918.
  • [13] Yano, K., On semi-symmetric metric connection. Rev. Roum. Math. Pureset Appl., 15(1970), 1579-1586.
  • [14] Zhao, P. B. and Jiao, L., Conformal transformations on Carnot Caratheodory spaces. Nihonkal Mathematical Journal, 17(2006), no. 2, 167-185.
Year 2017, , 39 - 47, 30.04.2017
https://doi.org/10.36890/iejg.584440

Abstract

References

  • [1] Agache, N. S. and Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math., 23(1992), no. 6, 399-409.
  • [2] Bejancu, A., Curvature in sub-Riemannian geometry, J. Math. Phys., 53, 023513, (2012), DOI :10.1063/1.3684957
  • [3] De, U. C. and Biswas, S. C., On a type of semi-symmetric non-metric connection on a Riemannian manifold. Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237-243.
  • [4] De, U. C. and Kamilya, D., On a type of semi-symmetric non-metric connection on a Riemannian manifold. J. Indian Inst. Sci., 75(1995), 707-710.
  • [5] Folland, G. B., Weyl manifolds. J. Diff. Geom., 4(1970), 145-153.
  • [6] Han, Y. L., Fu, F. Y. and Zhao, P. B., On semi-symmetric metric connection in sub-Riemannian manifold. Tamkang Journal of Mathematics, 47(2016), no. 4, 373-384.
  • [7] Lyra, G., Über eine modifikation der riemannschen Geometrie. Math. Z., 54(1951), 52-64.
  • [8] Montgomery, R., Abnormal minimizers. SIAM J. Control Optim., 32(1994), no. 6, 1605-1620.
  • [9] Montgomery, R., A Tour of Subriemannian geometries, Their Geodesics and Applications. Math. Surv. and Monographs, 91, AMS, 2002. [10] Sen, D. K. and Vanstone, J. R., On Weyl and Lyra manifolds. J. Math. Phys., 13(1972), 990-993.
  • [11] Tripathi, M. M. and Kakar, N., On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.
  • [12] Weyl, H., Gravitation und Elektrizltdt, S.-B. Preuss. Akad. Wiss. Berlin, p. 465. Translated in The principle of relativity, Dover Books, New York, 1918.
  • [13] Yano, K., On semi-symmetric metric connection. Rev. Roum. Math. Pureset Appl., 15(1970), 1579-1586.
  • [14] Zhao, P. B. and Jiao, L., Conformal transformations on Carnot Caratheodory spaces. Nihonkal Mathematical Journal, 17(2006), no. 2, 167-185.
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Han Yanling

Peibiao Zhao This is me

Publication Date April 30, 2017
Published in Issue Year 2017

Cite

APA Yanling, H., & Zhao, P. (2017). A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. International Electronic Journal of Geometry, 10(1), 39-47. https://doi.org/10.36890/iejg.584440
AMA Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. April 2017;10(1):39-47. doi:10.36890/iejg.584440
Chicago Yanling, Han, and Peibiao Zhao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 39-47. https://doi.org/10.36890/iejg.584440.
EndNote Yanling H, Zhao P (April 1, 2017) A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. International Electronic Journal of Geometry 10 1 39–47.
IEEE H. Yanling and P. Zhao, “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 39–47, 2017, doi: 10.36890/iejg.584440.
ISNAD Yanling, Han - Zhao, Peibiao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry 10/1 (April 2017), 39-47. https://doi.org/10.36890/iejg.584440.
JAMA Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. 2017;10:39–47.
MLA Yanling, Han and Peibiao Zhao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 39-47, doi:10.36890/iejg.584440.
Vancouver Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. 2017;10(1):39-47.