SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME
Year 2014,
, 26 - 35, 30.04.2014
Kazim İlarslan
,
Emilija Nešovıć
Abstract
![]()
References
- [1] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor 20, 229-242, 1969.
- [2] Bonnor, W. B., Curves with null normals in Minkowski space-time (A random walk in rela- tivity
and cosmology, Wiley Easten Limitid 33-47, 1985)
- [3] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying
plane?, Amer. Math. Monthly 110, 147-152, 2003.
- [4] Chen, B.Y. and Dillen F., Rectifying curves as centrodes and extremal curves, Bull. Inst.
Math. Acad. Sinica 33(2), 77-90, 2005.
- [5] İlarslan, K and Nešović E., Spacelike and timelike normal curves in Minkowski space-time,
Publ. Inst. Math. Belgrade 85 (99), 111-118, 2009.
- [6] İlarslan, K., Nešović, E. and Petrović-Torgašev M., Some characterizations of rectifying
curves in the Minkowski 3-space, Novi Sad J. Math. 33(2), 23-32, 2003.
- [7] O’Neill, B., Semi–Riemannian geometry with applications to relativity (Academic Press, New
York, 1983).
- [8] Otsuki, T., Differential Geometry, (In Japanese, Asakura Publishing Co. Ltd., 1961).
- [9] Petrović-Torgašev, M. and Šućurović E., W-curves in Minkowski space-time, Novi Sad J.
Math. 32(2), 55-65, 2002.
- [10] Valrave, J., Curves and surfaces in Minkowski space (Doctoral thesis, K. U. Leuven, Fac. of
Science, Leuven, 1995).
Year 2014,
, 26 - 35, 30.04.2014
Kazim İlarslan
,
Emilija Nešovıć
References
- [1] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor 20, 229-242, 1969.
- [2] Bonnor, W. B., Curves with null normals in Minkowski space-time (A random walk in rela- tivity
and cosmology, Wiley Easten Limitid 33-47, 1985)
- [3] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying
plane?, Amer. Math. Monthly 110, 147-152, 2003.
- [4] Chen, B.Y. and Dillen F., Rectifying curves as centrodes and extremal curves, Bull. Inst.
Math. Acad. Sinica 33(2), 77-90, 2005.
- [5] İlarslan, K and Nešović E., Spacelike and timelike normal curves in Minkowski space-time,
Publ. Inst. Math. Belgrade 85 (99), 111-118, 2009.
- [6] İlarslan, K., Nešović, E. and Petrović-Torgašev M., Some characterizations of rectifying
curves in the Minkowski 3-space, Novi Sad J. Math. 33(2), 23-32, 2003.
- [7] O’Neill, B., Semi–Riemannian geometry with applications to relativity (Academic Press, New
York, 1983).
- [8] Otsuki, T., Differential Geometry, (In Japanese, Asakura Publishing Co. Ltd., 1961).
- [9] Petrović-Torgašev, M. and Šućurović E., W-curves in Minkowski space-time, Novi Sad J.
Math. 32(2), 55-65, 2002.
- [10] Valrave, J., Curves and surfaces in Minkowski space (Doctoral thesis, K. U. Leuven, Fac. of
Science, Leuven, 1995).
There are 10 citations in total.