[1] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of
Berwald space. Publ. Math. Debrecen.
51(1997), 385-406.
[2] Bácsó, S. and Matsumoto, M., Finsler spaces with h-curvature tensor H dependent on position
alone. Publ. Math. Debrecen. 55(1999), 199-210.
[3] Berwald, L., Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die
kürzesten sind. Math. Z. 30(1929), 449-469.
[4] Berwald, L., Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung. Jber. Deutsch.
Math.-Verein. 34(1926), 213-220.
[5] Bidabad, B. and Tayebi, A., A classification of some Finsler
connections. Publ. Math. Debrecen 71(2007), 253-260.
[6] Li, B. Shen, Y. and Shen, Z., On a class of Douglas metrics. Studia Sci. Math. Hungarica 46(3)
(2009), 355-365.
[7] Matsumoto, M., An improvment proof of Numata and Shibata’s theorem on Finsler spaces of scalar
curvature. Publ. Math. Debrecen
64(2004), 489-500.
[8] Matsumoto, M., On the stretch curvature of a Finsler space and certain open problems. J. Nat.
Acad. Math. India 11(1997), 22-32.
[9] Najafi, B. and Tayebi, A., Weakly stretch Finsler metrics.
Publ Math Debrecen 7761(2017), 1-14.
[10] Szilasi, Z., On the projective theory of sprays with applications to Finsler geometry, PhD
Thesis, Debrecen (2010), arXiv:0908.4384.
[11] Tayebi, A. Azizpour, E. and Esrafilian, E., On a
family of connections in Finsler geometry. Publ. Math. Debrecen 72(2008), 1-15.
[12] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections. Bull. Iran. Math. Soc.
36(2) (2010), 57-73.
[13] Tayebi, A. and Najafi, B., Some curvature properties of (α, β)-metrics. Bulletin Mathematique
de la Societe des Sciences Mathematiques de Roumanie Tome 60 (108) No. 3, (2017), 277-291.
[14] Tayebi, A. and Najafi, B., On a class of homogeneous Finsler metrics. J. Geom. Phys. 140
(2019), 265-270.
[15] Tayebi, A. and Razgordani, M., Four families of projectively flat Finsler metrics with K = 1
and their non-Riemannian curvature properties. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.
RACSAM. 112(2018), 1463-1485.
[16] Tayebi, A. and Razgordani, M., On conformally flat fourth root (α, β)-metrics. Differ. Geom.
Appl. 62(2019) 253-266.
[17] Tayebi, A. and Sadeghi, H., On Cartan torsion of Finsler metric.
Publ. Math. Debrecen 82(2) (2013), 461-471.
[18] Tayebi, A. and Sadeghi, H., On a class of stretch metrics in Finsler geometry. Arabian
Journal of Mathematics 8(2019), 153-160.
[19] Tayebi, A. and Tabatabeifar, T., Dougals-Randers
manifolds with vanishing stretch tensor. Publ Math Debrecen 86(2015), 423-432.
[20] Tayebi, A. and Tabatabeifar, T., Unicorn metrics with almost vanishing H- and Ξ-curvatures.
Turkish J Math. 41(2017), 998-1008.
Douglas-Square Metrics with Vanishing Mean Stretch Curvature
[1] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of
Berwald space. Publ. Math. Debrecen.
51(1997), 385-406.
[2] Bácsó, S. and Matsumoto, M., Finsler spaces with h-curvature tensor H dependent on position
alone. Publ. Math. Debrecen. 55(1999), 199-210.
[3] Berwald, L., Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die
kürzesten sind. Math. Z. 30(1929), 449-469.
[4] Berwald, L., Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung. Jber. Deutsch.
Math.-Verein. 34(1926), 213-220.
[5] Bidabad, B. and Tayebi, A., A classification of some Finsler
connections. Publ. Math. Debrecen 71(2007), 253-260.
[6] Li, B. Shen, Y. and Shen, Z., On a class of Douglas metrics. Studia Sci. Math. Hungarica 46(3)
(2009), 355-365.
[7] Matsumoto, M., An improvment proof of Numata and Shibata’s theorem on Finsler spaces of scalar
curvature. Publ. Math. Debrecen
64(2004), 489-500.
[8] Matsumoto, M., On the stretch curvature of a Finsler space and certain open problems. J. Nat.
Acad. Math. India 11(1997), 22-32.
[9] Najafi, B. and Tayebi, A., Weakly stretch Finsler metrics.
Publ Math Debrecen 7761(2017), 1-14.
[10] Szilasi, Z., On the projective theory of sprays with applications to Finsler geometry, PhD
Thesis, Debrecen (2010), arXiv:0908.4384.
[11] Tayebi, A. Azizpour, E. and Esrafilian, E., On a
family of connections in Finsler geometry. Publ. Math. Debrecen 72(2008), 1-15.
[12] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections. Bull. Iran. Math. Soc.
36(2) (2010), 57-73.
[13] Tayebi, A. and Najafi, B., Some curvature properties of (α, β)-metrics. Bulletin Mathematique
de la Societe des Sciences Mathematiques de Roumanie Tome 60 (108) No. 3, (2017), 277-291.
[14] Tayebi, A. and Najafi, B., On a class of homogeneous Finsler metrics. J. Geom. Phys. 140
(2019), 265-270.
[15] Tayebi, A. and Razgordani, M., Four families of projectively flat Finsler metrics with K = 1
and their non-Riemannian curvature properties. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.
RACSAM. 112(2018), 1463-1485.
[16] Tayebi, A. and Razgordani, M., On conformally flat fourth root (α, β)-metrics. Differ. Geom.
Appl. 62(2019) 253-266.
[17] Tayebi, A. and Sadeghi, H., On Cartan torsion of Finsler metric.
Publ. Math. Debrecen 82(2) (2013), 461-471.
[18] Tayebi, A. and Sadeghi, H., On a class of stretch metrics in Finsler geometry. Arabian
Journal of Mathematics 8(2019), 153-160.
[19] Tayebi, A. and Tabatabeifar, T., Dougals-Randers
manifolds with vanishing stretch tensor. Publ Math Debrecen 86(2015), 423-432.
[20] Tayebi, A. and Tabatabeifar, T., Unicorn metrics with almost vanishing H- and Ξ-curvatures.
Turkish J Math. 41(2017), 998-1008.
Tayebi, A., & Izadian, N. (2019). Douglas-Square Metrics with Vanishing Mean Stretch Curvature. International Electronic Journal of Geometry, 12(2), 188-201. https://doi.org/10.36890/iejg.628080
AMA
Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. October 2019;12(2):188-201. doi:10.36890/iejg.628080
Chicago
Tayebi, Akbar, and Neda Izadian. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 188-201. https://doi.org/10.36890/iejg.628080.
EndNote
Tayebi A, Izadian N (October 1, 2019) Douglas-Square Metrics with Vanishing Mean Stretch Curvature. International Electronic Journal of Geometry 12 2 188–201.
IEEE
A. Tayebi and N. Izadian, “Douglas-Square Metrics with Vanishing Mean Stretch Curvature”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 188–201, 2019, doi: 10.36890/iejg.628080.
ISNAD
Tayebi, Akbar - Izadian, Neda. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry 12/2 (October 2019), 188-201. https://doi.org/10.36890/iejg.628080.
JAMA
Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. 2019;12:188–201.
MLA
Tayebi, Akbar and Neda Izadian. “Douglas-Square Metrics With Vanishing Mean Stretch Curvature”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 188-01, doi:10.36890/iejg.628080.
Vancouver
Tayebi A, Izadian N. Douglas-Square Metrics with Vanishing Mean Stretch Curvature. Int. Electron. J. Geom. 2019;12(2):188-201.