Research Article
BibTex RIS Cite
Year 2021, , 266 - 276, 29.10.2021
https://doi.org/10.36890/iejg.784598

Abstract

Supporting Institution

Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi BAP

Project Number

18119001

References

  • [1] Ambjorn, J., Carfora, M., Marzuoli, A.: The geometry of dynamical triangulations. Lecture Notes in Phys. New Ser. Monogr. 50, Springer- Verlag, Berlin, (1997).
  • [2] Bavard, C., Ghys, É.: Polygones du plan et polyedres hyperboliques. Geometriae Dedicata. 43(2), 207-224 (1992).
  • [3] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. USA: American Mathematical Society, (2001).
  • [4] Carfora, M., Dappiaggi, C., Marzuoli, A.: The modular geometry of random Regge triangulations. Classical Quantum Gravity. 19 (20), 5195–5220 (2002).
  • [5] Davis, P.: Circulant Matrices.Wiley, New York, (1970).
  • [6] Delign, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publications Mathématiques de l’IHÉS. 63(1), 5-89 (1986).
  • [7] Farb, B., Margalit, D.: A primer on mapping class groups. USA: Princeton University Press (2012).
  • [8] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Springer Science and Business Media (2007).
  • [9] Hulin, D., Troyanov, M.: Prescribing curvature on open surfaces. Mathematische Annalen. 293(1), 277-315 (1992).
  • [10] Masur, H., Tabachnikov, S.: Rational billiards and flat structures. In: Hasselblatt B, Katok A,editors. Handbook of dynamical systems 1. Amsterdam, Netherlands: Elsevier Science, 1015-1089 (2002).
  • [11] SaĞlam, ˙I.: Complete flat cone metrics on punctured surfaces. Turkish Journal of Mathematics. 43, 813-832 (2019).
  • [12] Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. Geometry and Topology monographs. 1, 511-549 (1998).
  • [13] Troyanov, M.: Les surfaces euclidiennes à singularités coniques. Ens. Math. 32, 79-94 (1986).
  • [14] Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Transactions of the American Mathematical Society. 324(2), 793-821 (1991).
  • [15] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Athanase Papadopoulos, editor. Handbook of Teichmüller Theory 1. Zurich, Switzerland: European Mathematical Society. 507-540 (2007).

Classification of Punctures on Complete Flat Surfaces

Year 2021, , 266 - 276, 29.10.2021
https://doi.org/10.36890/iejg.784598

Abstract

We investigate the behavior of a complete flat metric on a surface near a puncture. We call a puncture on a flat surface regular if it has a neighborhood which is isometric to that of a point at infinity of a cone. We prove that there are punctures which are not regular if and only if the curvature at the puncture is $4\pi$. We classify irregular punctures of a flat surface up to modification equivalence, where two punctures are called modification-equivalent if they have isometric neighborhoods. We show that there are uncountably many modification-equivalence classes of punctures on flat surfaces.

Project Number

18119001

References

  • [1] Ambjorn, J., Carfora, M., Marzuoli, A.: The geometry of dynamical triangulations. Lecture Notes in Phys. New Ser. Monogr. 50, Springer- Verlag, Berlin, (1997).
  • [2] Bavard, C., Ghys, É.: Polygones du plan et polyedres hyperboliques. Geometriae Dedicata. 43(2), 207-224 (1992).
  • [3] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. USA: American Mathematical Society, (2001).
  • [4] Carfora, M., Dappiaggi, C., Marzuoli, A.: The modular geometry of random Regge triangulations. Classical Quantum Gravity. 19 (20), 5195–5220 (2002).
  • [5] Davis, P.: Circulant Matrices.Wiley, New York, (1970).
  • [6] Delign, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publications Mathématiques de l’IHÉS. 63(1), 5-89 (1986).
  • [7] Farb, B., Margalit, D.: A primer on mapping class groups. USA: Princeton University Press (2012).
  • [8] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Springer Science and Business Media (2007).
  • [9] Hulin, D., Troyanov, M.: Prescribing curvature on open surfaces. Mathematische Annalen. 293(1), 277-315 (1992).
  • [10] Masur, H., Tabachnikov, S.: Rational billiards and flat structures. In: Hasselblatt B, Katok A,editors. Handbook of dynamical systems 1. Amsterdam, Netherlands: Elsevier Science, 1015-1089 (2002).
  • [11] SaĞlam, ˙I.: Complete flat cone metrics on punctured surfaces. Turkish Journal of Mathematics. 43, 813-832 (2019).
  • [12] Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. Geometry and Topology monographs. 1, 511-549 (1998).
  • [13] Troyanov, M.: Les surfaces euclidiennes à singularités coniques. Ens. Math. 32, 79-94 (1986).
  • [14] Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Transactions of the American Mathematical Society. 324(2), 793-821 (1991).
  • [15] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Athanase Papadopoulos, editor. Handbook of Teichmüller Theory 1. Zurich, Switzerland: European Mathematical Society. 507-540 (2007).
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

İsmail Sağlam 0000-0002-1283-6396

Project Number 18119001
Publication Date October 29, 2021
Acceptance Date May 12, 2021
Published in Issue Year 2021

Cite

APA Sağlam, İ. (2021). Classification of Punctures on Complete Flat Surfaces. International Electronic Journal of Geometry, 14(2), 266-276. https://doi.org/10.36890/iejg.784598
AMA Sağlam İ. Classification of Punctures on Complete Flat Surfaces. Int. Electron. J. Geom. October 2021;14(2):266-276. doi:10.36890/iejg.784598
Chicago Sağlam, İsmail. “Classification of Punctures on Complete Flat Surfaces”. International Electronic Journal of Geometry 14, no. 2 (October 2021): 266-76. https://doi.org/10.36890/iejg.784598.
EndNote Sağlam İ (October 1, 2021) Classification of Punctures on Complete Flat Surfaces. International Electronic Journal of Geometry 14 2 266–276.
IEEE İ. Sağlam, “Classification of Punctures on Complete Flat Surfaces”, Int. Electron. J. Geom., vol. 14, no. 2, pp. 266–276, 2021, doi: 10.36890/iejg.784598.
ISNAD Sağlam, İsmail. “Classification of Punctures on Complete Flat Surfaces”. International Electronic Journal of Geometry 14/2 (October 2021), 266-276. https://doi.org/10.36890/iejg.784598.
JAMA Sağlam İ. Classification of Punctures on Complete Flat Surfaces. Int. Electron. J. Geom. 2021;14:266–276.
MLA Sağlam, İsmail. “Classification of Punctures on Complete Flat Surfaces”. International Electronic Journal of Geometry, vol. 14, no. 2, 2021, pp. 266-7, doi:10.36890/iejg.784598.
Vancouver Sağlam İ. Classification of Punctures on Complete Flat Surfaces. Int. Electron. J. Geom. 2021;14(2):266-7.