[1] Alberich-Carramiñana, M., Geometry of the plane Cremona maps. Lecture Notes in Mathematics 1769, Springer-Verlag, Berlin, 2002.
[2] Bicknell-Johnson, M., Nearly isosceles triangles where the vertex angle is a multiple of the base angle. Applications of Fibonacci numbers,
vol. 4 (Winston-Salem, NC, 1990), pp. 41-50, Kluwer, Dordrecht, 1991.
[3] Carroll, J. and Yanosko, K., The determination of a class of primitive integral triangles. Fibonacci Quarterly, 29 (1991), no. 1, pp. 3–6.
[4] Coble, A., Cremona transformations and applications to algebra, geometry, and modular functions. Bulletin of the American Mathematical
Society, 28 (1922), no. 7, 329-364.
[5] Coolidge, J., A treatise on algebraic plane curves. Dover Publications, New York, 1959.
[6] Daykin, D. and Oppenheim, A., Triangles with rational sides and angle ratios. American Mathematical Monthly, 74 (1967), no. 1, pp. 45–47.
[7] Deshpande, M., Some new triples of integers and associated triangles. Mathematical Gazette, 86 (2002), no. 543, pp. 464-466.
[8] Fulton, W., Algebraic curves. An introduction to algebraic geometry. Advanced Book Classics, Addison-Wesley Publishing Company,
Redwood City, CA, 1989.
[9] Gibson, C., Elementary geometry of algebraic curves: an undergraduate introduction. Cambridge University Press, Cambridge, 1998.
[10] Guy, R., Triangles with B = 3A, 2B = 3A. Bulletin of the Malayan Mathematical Society, 1 (1954) pp. 56-60.
[11] Hoyt, J., Extending the converse of Pons Asinorum. Mathematics Magazine, 61 (1988), no. 5, pp. 308–313.
[12] Kendig, K., Is a 2000-year-old formula still keeping some secrets? American Mathematical Monthly, 107 (2000), no. 5, 402–415.
[14] Lemmermeyer, F., Parametrization of algebraic curves from a number theorist’s point of view. American Mathematical Monthly, 119 (2012),
no. 7, 573–583.
[15] Luthar, R., Integer-sided triangles with one angle twice another. College Mathematics Journal, 15 (1984) no.3, pp. 55–56.
[16] Nicollier, G., Triangles with two angles in the ratio 1:2. Mathematical Gazette, 98 (2014), no. 543, pp. 508–509.
[17] Parris, R., Commensurable Triangles. College Mathematics Journal, 38 (2007), no. 5, pp. 345–355.
[18] Reid, M., Undergraduate algebraic geometry. London Mathematical Society Student Texts 12, Cambridge University Press, Cambridge,
1988.
[19] Rusin, D., Rational Triangles with Equal Area. New York Journal of Mathematics, 4 (1998), pp. 1-15.
[20] Sadek, M. and Shahata, F., On rational triangles via algebraic curves. Rocky Mountain Journal of Mathematics, to appear (2017), available at
https://arxiv.org/abs/1610.07971
[22] Sendra, J., Winkler, F. and Pèrez-Dìaz, S., Rational algebraic curves. A computer algebra approach. Algorithms and Computation in
Mathematics 22, Springer, Berlin, 2008.
[23] Walker, R., Algebraic Curves. Princeton Mathematical Series 13, Princeton University Press, Princeton, 1950.
[24] Willson, W., A generalisation of a property of the 4, 5, 6 triangle. Mathematical Gazette, 60 (1976) no. 412, pp. 130-131.
Year 2018,
Volume: 11 Issue: 2, 71 - 82, 30.11.2018
[1] Alberich-Carramiñana, M., Geometry of the plane Cremona maps. Lecture Notes in Mathematics 1769, Springer-Verlag, Berlin, 2002.
[2] Bicknell-Johnson, M., Nearly isosceles triangles where the vertex angle is a multiple of the base angle. Applications of Fibonacci numbers,
vol. 4 (Winston-Salem, NC, 1990), pp. 41-50, Kluwer, Dordrecht, 1991.
[3] Carroll, J. and Yanosko, K., The determination of a class of primitive integral triangles. Fibonacci Quarterly, 29 (1991), no. 1, pp. 3–6.
[4] Coble, A., Cremona transformations and applications to algebra, geometry, and modular functions. Bulletin of the American Mathematical
Society, 28 (1922), no. 7, 329-364.
[5] Coolidge, J., A treatise on algebraic plane curves. Dover Publications, New York, 1959.
[6] Daykin, D. and Oppenheim, A., Triangles with rational sides and angle ratios. American Mathematical Monthly, 74 (1967), no. 1, pp. 45–47.
[7] Deshpande, M., Some new triples of integers and associated triangles. Mathematical Gazette, 86 (2002), no. 543, pp. 464-466.
[8] Fulton, W., Algebraic curves. An introduction to algebraic geometry. Advanced Book Classics, Addison-Wesley Publishing Company,
Redwood City, CA, 1989.
[9] Gibson, C., Elementary geometry of algebraic curves: an undergraduate introduction. Cambridge University Press, Cambridge, 1998.
[10] Guy, R., Triangles with B = 3A, 2B = 3A. Bulletin of the Malayan Mathematical Society, 1 (1954) pp. 56-60.
[11] Hoyt, J., Extending the converse of Pons Asinorum. Mathematics Magazine, 61 (1988), no. 5, pp. 308–313.
[12] Kendig, K., Is a 2000-year-old formula still keeping some secrets? American Mathematical Monthly, 107 (2000), no. 5, 402–415.
[14] Lemmermeyer, F., Parametrization of algebraic curves from a number theorist’s point of view. American Mathematical Monthly, 119 (2012),
no. 7, 573–583.
[15] Luthar, R., Integer-sided triangles with one angle twice another. College Mathematics Journal, 15 (1984) no.3, pp. 55–56.
[16] Nicollier, G., Triangles with two angles in the ratio 1:2. Mathematical Gazette, 98 (2014), no. 543, pp. 508–509.
[17] Parris, R., Commensurable Triangles. College Mathematics Journal, 38 (2007), no. 5, pp. 345–355.
[18] Reid, M., Undergraduate algebraic geometry. London Mathematical Society Student Texts 12, Cambridge University Press, Cambridge,
1988.
[19] Rusin, D., Rational Triangles with Equal Area. New York Journal of Mathematics, 4 (1998), pp. 1-15.
[20] Sadek, M. and Shahata, F., On rational triangles via algebraic curves. Rocky Mountain Journal of Mathematics, to appear (2017), available at
https://arxiv.org/abs/1610.07971
[22] Sendra, J., Winkler, F. and Pèrez-Dìaz, S., Rational algebraic curves. A computer algebra approach. Algorithms and Computation in
Mathematics 22, Springer, Berlin, 2008.
[23] Walker, R., Algebraic Curves. Princeton Mathematical Series 13, Princeton University Press, Princeton, 1950.
[24] Willson, W., A generalisation of a property of the 4, 5, 6 triangle. Mathematical Gazette, 60 (1976) no. 412, pp. 130-131.
Koshkin, S. (2018). Algebraic geometry on imaginary triangles. International Electronic Journal of Geometry, 11(2), 71-82. https://doi.org/10.36890/iejg.545133
AMA
Koshkin S. Algebraic geometry on imaginary triangles. Int. Electron. J. Geom. November 2018;11(2):71-82. doi:10.36890/iejg.545133
Chicago
Koshkin, Sergiy. “Algebraic Geometry on Imaginary Triangles”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 71-82. https://doi.org/10.36890/iejg.545133.
EndNote
Koshkin S (November 1, 2018) Algebraic geometry on imaginary triangles. International Electronic Journal of Geometry 11 2 71–82.
IEEE
S. Koshkin, “Algebraic geometry on imaginary triangles”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 71–82, 2018, doi: 10.36890/iejg.545133.
ISNAD
Koshkin, Sergiy. “Algebraic Geometry on Imaginary Triangles”. International Electronic Journal of Geometry 11/2 (November 2018), 71-82. https://doi.org/10.36890/iejg.545133.
JAMA
Koshkin S. Algebraic geometry on imaginary triangles. Int. Electron. J. Geom. 2018;11:71–82.
MLA
Koshkin, Sergiy. “Algebraic Geometry on Imaginary Triangles”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 71-82, doi:10.36890/iejg.545133.
Vancouver
Koshkin S. Algebraic geometry on imaginary triangles. Int. Electron. J. Geom. 2018;11(2):71-82.