Year 2009, Volume 2 , Issue 1, Pages 55 - 73 2009-04-30

Polynomial Poly-Vector Fields

Frank KLİNKER [1]


poly vector field, decomposition, poisson structure, jacobi structure
  • [1] Azcarrage, J.A., Perelomov, A.M. and Perez Bueno, J.C., The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures. J. Phys. A, Math. Gen., 29(24):7993-8009, 1996.
  • [2] Azcarrage, J.A., Perelomov, A.M. and Perez Bueno, J.C., Generalized Poisson structures. arXiv: hep-th/9611221 v2, 1996.
  • [3] Bhaskara, K.H. and Rama, K., Quadratic Poisson structures. J. Math. Phys., 32(9):2319- 2322, 1991.
  • [4] Cari~nena, J. F., Ibort, A., Marmo, G. and Perelomov, A. M., On the geometry of Lie algebras and Poisson tensors. J. Phys. A, Math. Gen., 27(22):7425-7449, 1994. x
  • [5] Dufour, Jean-Paul and Haraki, Abdeljalil, Rotationels et structures de Poisson quadratiques. C. R. Acad. Sci. Paris, Ser.I, (312):137-140, 1991.
  • [6] Fulton, William and Harris, Joe, Representation Theory. Graduate Texts in Mathematics 129. Springer-Verlag, New York, 1991.
  • [7] Grabowski, J., Marmo, G. and Perelomov, A. M., Poisson structures: towards a classi¯cation. Modern Phys. Lett. A, 8(18):1719-1733, 1993.
  • [8] Klinker, Frank, Quadratic Poisson structures in dimension four. Available at http://www.mathematik.tu-dortmund.de/∼klinker.
  • [9] Kobayashi, Shoshichi and Nomizu, Katsumi, Foundations of Differential Geometry. Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1996.
  • [10] Koszul, Jean-Louis, Crochet de Schouten-Nijenhuis et cohomologie. (Schouten-Nijenhuis bracket and cohomology). In Elie Cartan et les mathematiques d'aujourd'hui, The mathematical heritage of Elie Cartan, Semin. Lyon 1984, Asterisque, No.Hors Ser. 1985, 257-271,1985.
  • [11] Lin, Qian, Liu, Zhangju and Sheng, Yunhe, Quadratic deformations of Lie-Poisson structures. Lett. Math. Phys., 83(3):217-229, 2008.
  • [12] Liu, Zhangju and Xu, Ping, On quadratic Poisson structures. Lett. Math. Phys., 26(1):33-42, 1992.
  • [13] Malek, F. and Shafei Deh Abad, A., Homogeneous Poisson structures. Bull. Aust. Math. Soc., 54(2):203-210, 1996.
  • [14] Manchon, D., Masmoudi, M. and Roux, A., On quantization of quadratic Poisson structures. Comm. Math. Phys., 22(1):121-130, 2002.
  • [15] Perez Bueno, J.C., Generalized Jacobi structures. J. Phys. A, Math. Gen., 30(18):6509-6515, 1996.
  • [16] Petalidou, Fani, On a new relation between Jacobi and homogeneous Poisson manifolds. J. Phys. A, Math. Gen., 35:2505-2518, 2002.
  • [17] Sheng, Yunhe , Linear Poisson structures on R4. Journal of Geometry and Physics, 57(11) Pages 2398-2410, 2007.
Primary Language en
Journal Section Research Article
Authors

Author: Frank KLİNKER

Dates

Publication Date : April 30, 2009

Bibtex @research article { iejg584315, journal = {International Electronic Journal of Geometry}, issn = {}, eissn = {1307-5624}, address = {}, publisher = {Kazım İLARSLAN}, year = {2009}, volume = {2}, pages = {55 - 73}, doi = {}, title = {Polynomial Poly-Vector Fields}, key = {cite}, author = {Klinker, Frank} }
APA Klinker, F . (2009). Polynomial Poly-Vector Fields . International Electronic Journal of Geometry , 2 (1) , 55-73 . Retrieved from https://dergipark.org.tr/en/pub/iejg/issue/46545/584315
MLA Klinker, F . "Polynomial Poly-Vector Fields" . International Electronic Journal of Geometry 2 (2009 ): 55-73 <https://dergipark.org.tr/en/pub/iejg/issue/46545/584315>
Chicago Klinker, F . "Polynomial Poly-Vector Fields". International Electronic Journal of Geometry 2 (2009 ): 55-73
RIS TY - JOUR T1 - Polynomial Poly-Vector Fields AU - Frank Klinker Y1 - 2009 PY - 2009 N1 - DO - T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 55 EP - 73 VL - 2 IS - 1 SN - -1307-5624 M3 - UR - Y2 - 2021 ER -
EndNote %0 International Electronic Journal of Geometry Polynomial Poly-Vector Fields %A Frank Klinker %T Polynomial Poly-Vector Fields %D 2009 %J International Electronic Journal of Geometry %P -1307-5624 %V 2 %N 1 %R %U
ISNAD Klinker, Frank . "Polynomial Poly-Vector Fields". International Electronic Journal of Geometry 2 / 1 (April 2009): 55-73 .
AMA Klinker F . Polynomial Poly-Vector Fields. Int. Electron. J. Geom.. 2009; 2(1): 55-73.
Vancouver Klinker F . Polynomial Poly-Vector Fields. International Electronic Journal of Geometry. 2009; 2(1): 55-73.
IEEE F. Klinker , "Polynomial Poly-Vector Fields", International Electronic Journal of Geometry, vol. 2, no. 1, pp. 55-73, Apr. 2009