Research Article
BibTex RIS Cite

g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles

Year 2009, Volume: 2 Issue: 1, 74 - 94, 30.04.2009

Abstract

References

  • [1] Abbassi, K.M.T and Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math Brno 41(2005), no 1, 71-92.
  • [2] Abbassi, K.M.T. and Sarih, M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Di®er. Geom. Appl., 22(2005), no 1, 19-47.
  • [3] Abbassi, K.M.T and Sarih, M., On Riemannian g-natural metrics of the form a:gs + b:gh + c:gv on the tangent bundle of a Riemannian manifold (M; g), Mediter. J. Math., 2(2005), no 1, 19-45.
  • [4] Cordero, L.A., Dodson, C.T.J., and de Leon, M., Di®erential geometry of frame bundles, Kluwer Academic Publishers, 1989 .
  • [5] Dombroski, P., On the geometry of the tangent Bundle, J. Reine Angew. Math., 210(1962), 73-88.
  • [6] Kolar, I.; Michor, P.W. and Slovak, J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
  • [7] Kowalski, O. and Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on the tangent bundles{a classification, Bull. Tokyo Gakugei Univ. 40(1988), no 4, 1-19.
  • [8] Sasaki, S. On the differential geometry of the tangent bundles of Riemannian manifolds, Tohoku Math. J., 10(1958), no 3, 338-354.
  • [9] Yano, K. and Ishihara, S., Tangent and cotangent bundles, Differential Geometry, Marcel Dekker Inc., New York, 1973.
Year 2009, Volume: 2 Issue: 1, 74 - 94, 30.04.2009

Abstract

References

  • [1] Abbassi, K.M.T and Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math Brno 41(2005), no 1, 71-92.
  • [2] Abbassi, K.M.T. and Sarih, M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Di®er. Geom. Appl., 22(2005), no 1, 19-47.
  • [3] Abbassi, K.M.T and Sarih, M., On Riemannian g-natural metrics of the form a:gs + b:gh + c:gv on the tangent bundle of a Riemannian manifold (M; g), Mediter. J. Math., 2(2005), no 1, 19-45.
  • [4] Cordero, L.A., Dodson, C.T.J., and de Leon, M., Di®erential geometry of frame bundles, Kluwer Academic Publishers, 1989 .
  • [5] Dombroski, P., On the geometry of the tangent Bundle, J. Reine Angew. Math., 210(1962), 73-88.
  • [6] Kolar, I.; Michor, P.W. and Slovak, J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
  • [7] Kowalski, O. and Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on the tangent bundles{a classification, Bull. Tokyo Gakugei Univ. 40(1988), no 4, 1-19.
  • [8] Sasaki, S. On the differential geometry of the tangent bundles of Riemannian manifolds, Tohoku Math. J., 10(1958), no 3, 338-354.
  • [9] Yano, K. and Ishihara, S., Tangent and cotangent bundles, Differential Geometry, Marcel Dekker Inc., New York, 1973.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. Degla This is me

J.p. Ezin This is me

L. Todjihounde

Publication Date April 30, 2009
Published in Issue Year 2009 Volume: 2 Issue: 1

Cite

APA Degla, S., Ezin, J., & Todjihounde, L. (2009). g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles. International Electronic Journal of Geometry, 2(1), 74-94.
AMA Degla S, Ezin J, Todjihounde L. g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles. Int. Electron. J. Geom. April 2009;2(1):74-94.
Chicago Degla, S., J.p. Ezin, and L. Todjihounde. “G-Natural Metrics of Constant Sectional Curvature on Tangent Bundles”. International Electronic Journal of Geometry 2, no. 1 (April 2009): 74-94.
EndNote Degla S, Ezin J, Todjihounde L (April 1, 2009) g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles. International Electronic Journal of Geometry 2 1 74–94.
IEEE S. Degla, J. Ezin, and L. Todjihounde, “g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles”, Int. Electron. J. Geom., vol. 2, no. 1, pp. 74–94, 2009.
ISNAD Degla, S. et al. “G-Natural Metrics of Constant Sectional Curvature on Tangent Bundles”. International Electronic Journal of Geometry 2/1 (April 2009), 74-94.
JAMA Degla S, Ezin J, Todjihounde L. g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles. Int. Electron. J. Geom. 2009;2:74–94.
MLA Degla, S. et al. “G-Natural Metrics of Constant Sectional Curvature on Tangent Bundles”. International Electronic Journal of Geometry, vol. 2, no. 1, 2009, pp. 74-94.
Vancouver Degla S, Ezin J, Todjihounde L. g-Natural Metrics of Constant Sectional Curvature on Tangent Bundles. Int. Electron. J. Geom. 2009;2(1):74-9.