[1] Agache, N. S. and Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian
manifold. Indian J. Pure Appl. Math., 23(1992), no. 6, 399-409.
[2] Bejancu, A., Curvature in sub-Riemannian geometry, J. Math. Phys., 53, 023513, (2012), DOI
:10.1063/1.3684957
[3] De, U. C. and Biswas, S. C., On a type of semi-symmetric non-metric connection on a Riemannian
manifold. Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237-243.
[4] De, U. C. and Kamilya, D., On a type of semi-symmetric non-metric connection on a Riemannian
manifold. J. Indian Inst. Sci., 75(1995), 707-710.
[5] Folland, G. B., Weyl manifolds. J. Diff. Geom., 4(1970), 145-153.
[6] Han, Y. L., Fu, F. Y. and Zhao, P. B., On semi-symmetric metric connection in sub-Riemannian
manifold. Tamkang Journal of Mathematics, 47(2016), no. 4, 373-384.
[7] Lyra, G., Über eine modifikation der riemannschen Geometrie. Math. Z., 54(1951), 52-64.
[8] Montgomery, R., Abnormal minimizers. SIAM J. Control Optim., 32(1994), no. 6, 1605-1620.
[9] Montgomery, R., A Tour of Subriemannian geometries, Their Geodesics and Applications. Math.
Surv. and Monographs, 91, AMS, 2002. [10] Sen, D. K. and Vanstone, J. R., On Weyl and Lyra
manifolds. J. Math. Phys., 13(1972), 990-993.
[11] Tripathi, M. M. and Kakar, N., On a semi-symmetric non-metric connection in a Kenmotsu
manifold. Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.
[12] Weyl, H., Gravitation und Elektrizltdt, S.-B. Preuss. Akad. Wiss. Berlin, p. 465. Translated
in The principle of relativity, Dover Books, New York, 1918.
[13] Yano, K., On semi-symmetric metric connection. Rev. Roum. Math. Pureset Appl., 15(1970),
1579-1586.
[14] Zhao, P. B. and Jiao, L., Conformal transformations on Carnot Caratheodory spaces. Nihonkal
Mathematical Journal, 17(2006), no. 2, 167-185.
Year 2017,
Volume: 10 Issue: 1, 39 - 47, 30.04.2017
[1] Agache, N. S. and Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian
manifold. Indian J. Pure Appl. Math., 23(1992), no. 6, 399-409.
[2] Bejancu, A., Curvature in sub-Riemannian geometry, J. Math. Phys., 53, 023513, (2012), DOI
:10.1063/1.3684957
[3] De, U. C. and Biswas, S. C., On a type of semi-symmetric non-metric connection on a Riemannian
manifold. Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237-243.
[4] De, U. C. and Kamilya, D., On a type of semi-symmetric non-metric connection on a Riemannian
manifold. J. Indian Inst. Sci., 75(1995), 707-710.
[5] Folland, G. B., Weyl manifolds. J. Diff. Geom., 4(1970), 145-153.
[6] Han, Y. L., Fu, F. Y. and Zhao, P. B., On semi-symmetric metric connection in sub-Riemannian
manifold. Tamkang Journal of Mathematics, 47(2016), no. 4, 373-384.
[7] Lyra, G., Über eine modifikation der riemannschen Geometrie. Math. Z., 54(1951), 52-64.
[8] Montgomery, R., Abnormal minimizers. SIAM J. Control Optim., 32(1994), no. 6, 1605-1620.
[9] Montgomery, R., A Tour of Subriemannian geometries, Their Geodesics and Applications. Math.
Surv. and Monographs, 91, AMS, 2002. [10] Sen, D. K. and Vanstone, J. R., On Weyl and Lyra
manifolds. J. Math. Phys., 13(1972), 990-993.
[11] Tripathi, M. M. and Kakar, N., On a semi-symmetric non-metric connection in a Kenmotsu
manifold. Bull. Cal. Math. Soc., 16(2001), no. 4, 323-330.
[12] Weyl, H., Gravitation und Elektrizltdt, S.-B. Preuss. Akad. Wiss. Berlin, p. 465. Translated
in The principle of relativity, Dover Books, New York, 1918.
[13] Yano, K., On semi-symmetric metric connection. Rev. Roum. Math. Pureset Appl., 15(1970),
1579-1586.
[14] Zhao, P. B. and Jiao, L., Conformal transformations on Carnot Caratheodory spaces. Nihonkal
Mathematical Journal, 17(2006), no. 2, 167-185.
Yanling, H., & Zhao, P. (2017). A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. International Electronic Journal of Geometry, 10(1), 39-47. https://doi.org/10.36890/iejg.584440
AMA
Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. April 2017;10(1):39-47. doi:10.36890/iejg.584440
Chicago
Yanling, Han, and Peibiao Zhao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 39-47. https://doi.org/10.36890/iejg.584440.
EndNote
Yanling H, Zhao P (April 1, 2017) A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. International Electronic Journal of Geometry 10 1 39–47.
IEEE
H. Yanling and P. Zhao, “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 39–47, 2017, doi: 10.36890/iejg.584440.
ISNAD
Yanling, Han - Zhao, Peibiao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry 10/1 (April 2017), 39-47. https://doi.org/10.36890/iejg.584440.
JAMA
Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. 2017;10:39–47.
MLA
Yanling, Han and Peibiao Zhao. “A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 39-47, doi:10.36890/iejg.584440.
Vancouver
Yanling H, Zhao P. A Class of Nearly Sub-Weyl and Sub-Lyra Manifolds. Int. Electron. J. Geom. 2017;10(1):39-47.