Research Article
BibTex RIS Cite

The Euler Class in the Simplicial de Rham Complex

Year 2016, Volume: 9 Issue: 2, 36 - 43, 30.10.2016
https://doi.org/10.36890/iejg.584579

Abstract

References

  • [1] Bott, R., On the Chern-Weil homomorphism and the continuous cohomology of the Lie group. Adv. in Math. 11 (1973), 289-303.
  • [2] Bott, R., Shulman, H. and Stasheff, J., On the de Rham Theory of Certain Classifying Spaces. Adv. in Math. 20 (1976), 43-56.
  • [3] Brylinski, J-L., Differentiable cohomology of gauge groups, math.DG/0011069.
  • [4] Dupont, J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology Vol 15(1976),233-245, Perg Press.
  • [5] Dupont, J.L., Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.
  • [6] Mostow, M. and Perchick, J., Notes on Gel’fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott). In Eleventh Holiday Symposium. New Mexico State University, December 1973.
  • [7] Segal, G., Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. No.34 1968 105-112.
  • [8] Suzuki, N., The Chern character in the Simplicial de Rham Complex. Nihonkai Mathematical Journal Vol.26 (2015), No1, pp.1-13.
Year 2016, Volume: 9 Issue: 2, 36 - 43, 30.10.2016
https://doi.org/10.36890/iejg.584579

Abstract

References

  • [1] Bott, R., On the Chern-Weil homomorphism and the continuous cohomology of the Lie group. Adv. in Math. 11 (1973), 289-303.
  • [2] Bott, R., Shulman, H. and Stasheff, J., On the de Rham Theory of Certain Classifying Spaces. Adv. in Math. 20 (1976), 43-56.
  • [3] Brylinski, J-L., Differentiable cohomology of gauge groups, math.DG/0011069.
  • [4] Dupont, J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology Vol 15(1976),233-245, Perg Press.
  • [5] Dupont, J.L., Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.
  • [6] Mostow, M. and Perchick, J., Notes on Gel’fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott). In Eleventh Holiday Symposium. New Mexico State University, December 1973.
  • [7] Segal, G., Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. No.34 1968 105-112.
  • [8] Suzuki, N., The Chern character in the Simplicial de Rham Complex. Nihonkai Mathematical Journal Vol.26 (2015), No1, pp.1-13.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Naoya Suzuki This is me

Publication Date October 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 2

Cite

APA Suzuki, N. (2016). The Euler Class in the Simplicial de Rham Complex. International Electronic Journal of Geometry, 9(2), 36-43. https://doi.org/10.36890/iejg.584579
AMA Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. October 2016;9(2):36-43. doi:10.36890/iejg.584579
Chicago Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 36-43. https://doi.org/10.36890/iejg.584579.
EndNote Suzuki N (October 1, 2016) The Euler Class in the Simplicial de Rham Complex. International Electronic Journal of Geometry 9 2 36–43.
IEEE N. Suzuki, “The Euler Class in the Simplicial de Rham Complex”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 36–43, 2016, doi: 10.36890/iejg.584579.
ISNAD Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry 9/2 (October 2016), 36-43. https://doi.org/10.36890/iejg.584579.
JAMA Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. 2016;9:36–43.
MLA Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 36-43, doi:10.36890/iejg.584579.
Vancouver Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. 2016;9(2):36-43.