[1] Blair, D.E., Contact manifold in Riemannian geometry. Lecture Notes on Mathematics. Springer, Berlin, 509, 1976.
[2] Blair, D.E., Riemannian geometry on contact and symplectic manifolds. Progr. Math. 203, Birkhäuser, 2010.
[3] Blair, D.E., Koufogiorgos, T. and Papantoniou, B.J., Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995), 189-214.
[4] De, U.C., On ϕ-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 1 (2008), 33-38.
[5] De, U.C., Sarkar, A., On ϕ-Ricci symmetric Sasakian manifolds. Proc. of the Jangjeon Math. Soc. 11 (2008), 47-52.
[6] De, U.C., Shaikh, A.A. and Biswas, S., On ϕ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003), 43-48.
[7] De, U.C., Yildiz, A. and Yaliniz, A.F., On ϕ-recurrent Kenmotsu manifolds. Turkish J. Math. 33 (2009), 17-25.
[8] De, U.C., Yildiz, A. and Yaliniz, A.F., Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3. Applied Math. Letters.
22 (2009), 723-727.
[9] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 343-354.
[10] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46-61.
[11] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds with a condition of ϕ-parallelism. Differential Geom. Appl. 27 (2009), 671-679.
[12] Gray, A., Spaces of constancy of curvature operators. Proc. Amer. Math. Soc. 17 (1966), 897-902.
[13] Kenmotsu, K., A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.
[14] Pastore, A.M. and Saltarelli, V., Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4 (2011), 168-183.
[16] Tanno, S., Some differential equations on Riemannian manifolds. J. Math. Soc. Japan. 30 (1978), 509-531.
[17] Wang, Y. and Liu, X., Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions. Filomat. 28 (2014),
839-847.
[18] Wang, Y. and Liu, X., Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math. 112 (2014),
37-46.
[19] Wang, Y. and Liu, X., On ϕ-recurrent almost Kenmotsu manifolds. Kuwait J. Sci. 42 (2015), 65-77.
[20] Wang, Y. and Liu, X., On a type of almost Kenmotsu manifolds with harmonic curvature tensors. Bull. Belg. Math. Soc. Simon Stevin. 22
(2015), 15-24.
[21] Wang, Y. and Liu, X., On almost Kenmotsu manifolds satisfying some nullity distributions. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
86 (2016), 347-353.
Year 2016,
Volume: 9 Issue: 2, 70 - 79, 30.10.2016
[1] Blair, D.E., Contact manifold in Riemannian geometry. Lecture Notes on Mathematics. Springer, Berlin, 509, 1976.
[2] Blair, D.E., Riemannian geometry on contact and symplectic manifolds. Progr. Math. 203, Birkhäuser, 2010.
[3] Blair, D.E., Koufogiorgos, T. and Papantoniou, B.J., Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995), 189-214.
[4] De, U.C., On ϕ-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 1 (2008), 33-38.
[5] De, U.C., Sarkar, A., On ϕ-Ricci symmetric Sasakian manifolds. Proc. of the Jangjeon Math. Soc. 11 (2008), 47-52.
[6] De, U.C., Shaikh, A.A. and Biswas, S., On ϕ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003), 43-48.
[7] De, U.C., Yildiz, A. and Yaliniz, A.F., On ϕ-recurrent Kenmotsu manifolds. Turkish J. Math. 33 (2009), 17-25.
[8] De, U.C., Yildiz, A. and Yaliniz, A.F., Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3. Applied Math. Letters.
22 (2009), 723-727.
[9] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 343-354.
[10] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46-61.
[11] Dileo, G. and Pastore, A.M., Almost Kenmotsu manifolds with a condition of ϕ-parallelism. Differential Geom. Appl. 27 (2009), 671-679.
[12] Gray, A., Spaces of constancy of curvature operators. Proc. Amer. Math. Soc. 17 (1966), 897-902.
[13] Kenmotsu, K., A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.
[14] Pastore, A.M. and Saltarelli, V., Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4 (2011), 168-183.
[16] Tanno, S., Some differential equations on Riemannian manifolds. J. Math. Soc. Japan. 30 (1978), 509-531.
[17] Wang, Y. and Liu, X., Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions. Filomat. 28 (2014),
839-847.
[18] Wang, Y. and Liu, X., Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math. 112 (2014),
37-46.
[19] Wang, Y. and Liu, X., On ϕ-recurrent almost Kenmotsu manifolds. Kuwait J. Sci. 42 (2015), 65-77.
[20] Wang, Y. and Liu, X., On a type of almost Kenmotsu manifolds with harmonic curvature tensors. Bull. Belg. Math. Soc. Simon Stevin. 22
(2015), 15-24.
[21] Wang, Y. and Liu, X., On almost Kenmotsu manifolds satisfying some nullity distributions. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
86 (2016), 347-353.
De, U., & Mandal, K. (2016). On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions. International Electronic Journal of Geometry, 9(2), 70-79. https://doi.org/10.36890/iejg.584599
AMA
De U, Mandal K. On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions. Int. Electron. J. Geom. October 2016;9(2):70-79. doi:10.36890/iejg.584599
Chicago
De, U.c., and Krishanu Mandal. “On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds With Nullity Distributions”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 70-79. https://doi.org/10.36890/iejg.584599.
EndNote
De U, Mandal K (October 1, 2016) On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions. International Electronic Journal of Geometry 9 2 70–79.
IEEE
U. De and K. Mandal, “On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 70–79, 2016, doi: 10.36890/iejg.584599.
ISNAD
De, U.c. - Mandal, Krishanu. “On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds With Nullity Distributions”. International Electronic Journal of Geometry 9/2 (October 2016), 70-79. https://doi.org/10.36890/iejg.584599.
JAMA
De U, Mandal K. On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions. Int. Electron. J. Geom. 2016;9:70–79.
MLA
De, U.c. and Krishanu Mandal. “On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds With Nullity Distributions”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 70-79, doi:10.36890/iejg.584599.
Vancouver
De U, Mandal K. On ϕ-Ricci Recurrent Almost Kenmotsu Manifolds with Nullity Distributions. Int. Electron. J. Geom. 2016;9(2):70-9.