Research Article
BibTex RIS Cite
Year 2016, Volume: 9 Issue: 1, 100 - 110, 30.04.2016
https://doi.org/10.36890/iejg.591899

Abstract

References

  • [1] Ferapontov, E. V., Integrable systems in projective differential geometry, Kyushu J. Math. 54(2000), no. 1, 183–215.
  • [2] Fujioka A., Furuhata H. and Sasaki T., Projective minimality for centroaffine minimal surfaces, J. Geom. 105(2014), no. 1, 87–102.
  • [3] Furuhata H., Minimal centroaffine immersions of codimension two, Bull. Belg. Math. Soc. 7(2000), no. 1, 125–134.
  • [4] Liu H.-L., Indefinite equi-centroaffinely homogeneous surfaces with vanishing Pick-invariant in R4, Math. J. 26(1997), no. 1, 225–251.
  • [5] Lopšic, A. M., On the theory of a surface of n dimensions in an equicentroaffine space of n + 2 dimensions, (Russian) Sem. Vektor. Tenzor. Analizu. 8(1950), 286–295.
  • [6] Nomizu K. and Sasaki T., Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132(1993), 63–90.
  • [7] Nomizu K. and Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994.
  • [8] Sasaki T., Projective differential geometry and linear homogeneous differential equations, Rokko Lectures in Math. 5. Kobe University, 1999.
  • [9] Sasaki T., Line congruence and transformation of projective surfaces, Kyushu J. Math. 60(2006), no. 1, 101–243.
  • [10] Simon, U., Schwenk-Schellschmidt, A. and Viesel, H., Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, Science University of Tokyo, Tokyo, 1991.
  • [11] Walter, R., Centroaffine differential geometry: submanifolds of codimension 2, Results Math. 13(1988), no. 3-4, 386-402.
  • [12] Yang Y. and Liu H.-L., Minimal centroaffine immersions of codimension two, Results Math. 52(2008), no. 3-4, 423–437.

Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two

Year 2016, Volume: 9 Issue: 1, 100 - 110, 30.04.2016
https://doi.org/10.36890/iejg.591899

Abstract

   We prove that any non-degenerate surface in the projective 3-space has a local lift as a minimal

pre-normalized Blaschke immersion into the equicentroaffine 4-space. Furthermore, an indefinite
surface in the projective 3-space has a local lift as a pre-normalized Blaschke immersion into the
equicentroaffine 4-space satisfying the Einstein condition if and only if the surface is projectively
applicable to an affine sphere.

References

  • [1] Ferapontov, E. V., Integrable systems in projective differential geometry, Kyushu J. Math. 54(2000), no. 1, 183–215.
  • [2] Fujioka A., Furuhata H. and Sasaki T., Projective minimality for centroaffine minimal surfaces, J. Geom. 105(2014), no. 1, 87–102.
  • [3] Furuhata H., Minimal centroaffine immersions of codimension two, Bull. Belg. Math. Soc. 7(2000), no. 1, 125–134.
  • [4] Liu H.-L., Indefinite equi-centroaffinely homogeneous surfaces with vanishing Pick-invariant in R4, Math. J. 26(1997), no. 1, 225–251.
  • [5] Lopšic, A. M., On the theory of a surface of n dimensions in an equicentroaffine space of n + 2 dimensions, (Russian) Sem. Vektor. Tenzor. Analizu. 8(1950), 286–295.
  • [6] Nomizu K. and Sasaki T., Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132(1993), 63–90.
  • [7] Nomizu K. and Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994.
  • [8] Sasaki T., Projective differential geometry and linear homogeneous differential equations, Rokko Lectures in Math. 5. Kobe University, 1999.
  • [9] Sasaki T., Line congruence and transformation of projective surfaces, Kyushu J. Math. 60(2006), no. 1, 101–243.
  • [10] Simon, U., Schwenk-Schellschmidt, A. and Viesel, H., Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, Science University of Tokyo, Tokyo, 1991.
  • [11] Walter, R., Centroaffine differential geometry: submanifolds of codimension 2, Results Math. 13(1988), no. 3-4, 386-402.
  • [12] Yang Y. and Liu H.-L., Minimal centroaffine immersions of codimension two, Results Math. 52(2008), no. 3-4, 423–437.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Atsushi Fujioka This is me

Hitoshi Furuhata This is me

Takeshi Sasaki This is me

Publication Date April 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 1

Cite

APA Fujioka, A., Furuhata, H., & Sasaki, T. (2016). Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two. International Electronic Journal of Geometry, 9(1), 100-110. https://doi.org/10.36890/iejg.591899
AMA Fujioka A, Furuhata H, Sasaki T. Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two. Int. Electron. J. Geom. April 2016;9(1):100-110. doi:10.36890/iejg.591899
Chicago Fujioka, Atsushi, Hitoshi Furuhata, and Takeshi Sasaki. “Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 100-110. https://doi.org/10.36890/iejg.591899.
EndNote Fujioka A, Furuhata H, Sasaki T (April 1, 2016) Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two. International Electronic Journal of Geometry 9 1 100–110.
IEEE A. Fujioka, H. Furuhata, and T. Sasaki, “Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 100–110, 2016, doi: 10.36890/iejg.591899.
ISNAD Fujioka, Atsushi et al. “Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two”. International Electronic Journal of Geometry 9/1 (April 2016), 100-110. https://doi.org/10.36890/iejg.591899.
JAMA Fujioka A, Furuhata H, Sasaki T. Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two. Int. Electron. J. Geom. 2016;9:100–110.
MLA Fujioka, Atsushi et al. “Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 100-1, doi:10.36890/iejg.591899.
Vancouver Fujioka A, Furuhata H, Sasaki T. Projective Surfaces and Pre-Normalized Blaschke Immersions of Codimension Two. Int. Electron. J. Geom. 2016;9(1):100-1.