[1] Barros, M., Ferrndez, A., Lucas, P. and Meroo, M.A., Willmore Tori and
Willmore-Chen Submanifolds in Pseudo-Riemannian Spaces,Journal of Geom- etry and Physics, 28(1998),
45-66.
[3] Brunnett, G., A New Characterization of Plane Elastica, Mathematical Meth- ods in Computer
Aided Geometric Design II (eds.) Tom Lyche and Larry L. Schumaker (Academic Press, Inc., 1992),
43-56.
[4] Brunnett, G. and Crouch, P.E., Elastic Curves on the Sphere, Naval Postgrad- uate School,
Monterey, California, 1993.
[5] Huang, R., A Note on the p-elastica in a Constant Sectional Curvature Mani- fold, Journal of
Geometry and Physics, 49(2004), 343-349.
[6] Langer, J. and Singer, D., The Total Squared Curvature of Closed Curves, Journal of
Differential Geometry, 20(1984), 1-22.
[7] Liu, H., Curves in the Lightlike Cone, Beitrge zur Algebra und Geometrie Contributions to
Algebra and Geometry, 44(2004), no. 1, 291-303.
[8] Liu, H., Meng, Q., Representation Formulas of Curves in a two and three- dimensional Lightlike
Cone, Results in Mathematics, 59(2011), 437-451.
[9] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz- Minkowski Space,
International Electronic Journal of Geometry, 7(2014), no.1, 44-107.
[10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Aca- demic Pres., New
York, 1993.
[11] Oral, M., Elastic Curves on Hyperquadrics in Minkowski 3-space, Master The- sis, Sleyman
Demirel University, Graduate School of Natural and Applied Sci- ences, 2010, 40p.
[12] Ozkan, G., Elastic Strips in Minkowski 3-space, Doctoral Thesis, Sleyman Demirel University,
Graduate School of Natural and Applied Sciences, 2014, 93p.
[13] Singer, D. Lectures on elastic curves and rods, AIP Conf. Proc. 1002, Amer.
Inst. Phys., Melville. New York, 2008.
[14] Steinberg, D., H., Elastic Curves in Hyperbolic Space, Doctoral Thesis, Case Western Reserve
University, UMI Microform 9607925, 1995, 72p.
[15] Weinstock, R., Calculus of Variations, McGraw-Hill Book Company, USA, 1952, 326p.
[16] Yucesan, A. and Oral, M., Elastica on 2-dimensional anti-De Sitter space, International
Journal of Geometric Methods in Modern Physics, 8(2011), no.1,
107-113.
[1] Barros, M., Ferrndez, A., Lucas, P. and Meroo, M.A., Willmore Tori and
Willmore-Chen Submanifolds in Pseudo-Riemannian Spaces,Journal of Geom- etry and Physics, 28(1998),
45-66.
[3] Brunnett, G., A New Characterization of Plane Elastica, Mathematical Meth- ods in Computer
Aided Geometric Design II (eds.) Tom Lyche and Larry L. Schumaker (Academic Press, Inc., 1992),
43-56.
[4] Brunnett, G. and Crouch, P.E., Elastic Curves on the Sphere, Naval Postgrad- uate School,
Monterey, California, 1993.
[5] Huang, R., A Note on the p-elastica in a Constant Sectional Curvature Mani- fold, Journal of
Geometry and Physics, 49(2004), 343-349.
[6] Langer, J. and Singer, D., The Total Squared Curvature of Closed Curves, Journal of
Differential Geometry, 20(1984), 1-22.
[7] Liu, H., Curves in the Lightlike Cone, Beitrge zur Algebra und Geometrie Contributions to
Algebra and Geometry, 44(2004), no. 1, 291-303.
[8] Liu, H., Meng, Q., Representation Formulas of Curves in a two and three- dimensional Lightlike
Cone, Results in Mathematics, 59(2011), 437-451.
[9] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz- Minkowski Space,
International Electronic Journal of Geometry, 7(2014), no.1, 44-107.
[10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Aca- demic Pres., New
York, 1993.
[11] Oral, M., Elastic Curves on Hyperquadrics in Minkowski 3-space, Master The- sis, Sleyman
Demirel University, Graduate School of Natural and Applied Sci- ences, 2010, 40p.
[12] Ozkan, G., Elastic Strips in Minkowski 3-space, Doctoral Thesis, Sleyman Demirel University,
Graduate School of Natural and Applied Sciences, 2014, 93p.
[13] Singer, D. Lectures on elastic curves and rods, AIP Conf. Proc. 1002, Amer.
Inst. Phys., Melville. New York, 2008.
[14] Steinberg, D., H., Elastic Curves in Hyperbolic Space, Doctoral Thesis, Case Western Reserve
University, UMI Microform 9607925, 1995, 72p.
[15] Weinstock, R., Calculus of Variations, McGraw-Hill Book Company, USA, 1952, 326p.
[16] Yucesan, A. and Oral, M., Elastica on 2-dimensional anti-De Sitter space, International
Journal of Geometric Methods in Modern Physics, 8(2011), no.1,
107-113.
Tükel, G. ., & Yücesan, A. (2015). ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE. International Electronic Journal of Geometry, 8(2), 1-8. https://doi.org/10.36890/iejg.592272
AMA
Tükel G, Yücesan A. ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE. Int. Electron. J. Geom. October 2015;8(2):1-8. doi:10.36890/iejg.592272
Chicago
Tükel, Gözde özkan, and Ahmet Yücesan. “ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 1-8. https://doi.org/10.36890/iejg.592272.
EndNote
Tükel G, Yücesan A (October 1, 2015) ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE. International Electronic Journal of Geometry 8 2 1–8.
IEEE
G. . Tükel and A. Yücesan, “ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 1–8, 2015, doi: 10.36890/iejg.592272.
ISNAD
Tükel, Gözde özkan - Yücesan, Ahmet. “ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE”. International Electronic Journal of Geometry 8/2 (October 2015), 1-8. https://doi.org/10.36890/iejg.592272.
JAMA
Tükel G, Yücesan A. ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE. Int. Electron. J. Geom. 2015;8:1–8.
MLA
Tükel, Gözde özkan and Ahmet Yücesan. “ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 1-8, doi:10.36890/iejg.592272.
Vancouver
Tükel G, Yücesan A. ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE. Int. Electron. J. Geom. 2015;8(2):1-8.