[1] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S3., Internat.
J.Math., 12(2002), no. 4, 867-876.
[2] Caddeo, R., Oniciuc, C. and Piu, P., Explicit formulas for non-geodesic biharmonic curves of
the Heisenberg group, Rend. Sem. Mat. Univ. Politec, Torino, 62(2004), 265-278.
[3] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The Classification of Biharmonic Curves of
Cartan-Vranceanu 3-Dimensional Spaces, Modern trends in geometry and topology, Cluj Univ. Press,
Cluj-Napoca, (2006), 121-131.
[4] Cho, J.T., Inoguchi J. and Lee, J., iharmonic curves in 3-dimensional Sasakian space forms,
Annali di Matematica (2007). doi: 10.1007/s10231-006-0026-x
[5] Choi, J.H., Kang, T.H. and Kim, Y.H., Bertrand curves in 3- dimensional space forms, Appl.
Math. Comput., 219(2012), 1040-1046.
[6] Dimitric, I., Submanifolds of Em with harmonic mean curvature vector, Modern trends in
geometry and topology, Cluj Univ. Press, Cluj-Napoca, 20(1992), 53-65.
[7] Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds, Amer. J.
Math., 86(1964), 109-160.
[8] Fetcu, D., Biharmonic curves in the generalized Heisenberg Group, Contributions to Algebra and
Geometry, 46(2005), no. 2, 513-521.
[9] Fetcu, D., Biharmonic curves in Cartan-Vranceanu (2n + 1)−Dimensional Spaces, Contribu- tions
to Algebra and Geometry, 46(2007), no. 2, 513-521.
[10] Jiang, G.Y., 2−harmonic isometric immersions between Riemannian manifolds, Chinese Ann.
Math., 7(1986), no. 2, 130-144.
[11] K¨orpınar, T. and Turhan, E., Characterization Bertrand Curve in the Heisenberg Group
Heis3, Int. J. Open Problems Complex Analysis, 3(2011), no. 2, 61-67.
[12] Nutbourne, A.W. and Martin, R.R., Differential Geometry Applied to the Design of Curves
and Surfaces, Ellis Horwood, Chichester, UK, 1988.
Year 2015,
Volume: 8 Issue: 1, 45 - 52, 30.04.2015
[1] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S3., Internat.
J.Math., 12(2002), no. 4, 867-876.
[2] Caddeo, R., Oniciuc, C. and Piu, P., Explicit formulas for non-geodesic biharmonic curves of
the Heisenberg group, Rend. Sem. Mat. Univ. Politec, Torino, 62(2004), 265-278.
[3] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The Classification of Biharmonic Curves of
Cartan-Vranceanu 3-Dimensional Spaces, Modern trends in geometry and topology, Cluj Univ. Press,
Cluj-Napoca, (2006), 121-131.
[4] Cho, J.T., Inoguchi J. and Lee, J., iharmonic curves in 3-dimensional Sasakian space forms,
Annali di Matematica (2007). doi: 10.1007/s10231-006-0026-x
[5] Choi, J.H., Kang, T.H. and Kim, Y.H., Bertrand curves in 3- dimensional space forms, Appl.
Math. Comput., 219(2012), 1040-1046.
[6] Dimitric, I., Submanifolds of Em with harmonic mean curvature vector, Modern trends in
geometry and topology, Cluj Univ. Press, Cluj-Napoca, 20(1992), 53-65.
[7] Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds, Amer. J.
Math., 86(1964), 109-160.
[8] Fetcu, D., Biharmonic curves in the generalized Heisenberg Group, Contributions to Algebra and
Geometry, 46(2005), no. 2, 513-521.
[9] Fetcu, D., Biharmonic curves in Cartan-Vranceanu (2n + 1)−Dimensional Spaces, Contribu- tions
to Algebra and Geometry, 46(2007), no. 2, 513-521.
[10] Jiang, G.Y., 2−harmonic isometric immersions between Riemannian manifolds, Chinese Ann.
Math., 7(1986), no. 2, 130-144.
[11] K¨orpınar, T. and Turhan, E., Characterization Bertrand Curve in the Heisenberg Group
Heis3, Int. J. Open Problems Complex Analysis, 3(2011), no. 2, 61-67.
[12] Nutbourne, A.W. and Martin, R.R., Differential Geometry Applied to the Design of Curves
and Surfaces, Ellis Horwood, Chichester, UK, 1988.
Ceylan, A. Y., & Ergin, A. A. (2015). BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE. International Electronic Journal of Geometry, 8(1), 45-52. https://doi.org/10.36890/iejg.592796
AMA
Ceylan AY, Ergin AA. BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE. Int. Electron. J. Geom. April 2015;8(1):45-52. doi:10.36890/iejg.592796
Chicago
Ceylan, Ayşe Yilmaz, and Abdullah Aziz Ergin. “BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE”. International Electronic Journal of Geometry 8, no. 1 (April 2015): 45-52. https://doi.org/10.36890/iejg.592796.
EndNote
Ceylan AY, Ergin AA (April 1, 2015) BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE. International Electronic Journal of Geometry 8 1 45–52.
IEEE
A. Y. Ceylan and A. A. Ergin, “BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE”, Int. Electron. J. Geom., vol. 8, no. 1, pp. 45–52, 2015, doi: 10.36890/iejg.592796.
ISNAD
Ceylan, Ayşe Yilmaz - Ergin, Abdullah Aziz. “BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE”. International Electronic Journal of Geometry 8/1 (April 2015), 45-52. https://doi.org/10.36890/iejg.592796.
JAMA
Ceylan AY, Ergin AA. BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE. Int. Electron. J. Geom. 2015;8:45–52.
MLA
Ceylan, Ayşe Yilmaz and Abdullah Aziz Ergin. “BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE”. International Electronic Journal of Geometry, vol. 8, no. 1, 2015, pp. 45-52, doi:10.36890/iejg.592796.
Vancouver
Ceylan AY, Ergin AA. BERTRAND MATE OF A BIHARMONIC CURVE IN CARTAN-VRANCEANU 3-DIMENSIONAL SPACE. Int. Electron. J. Geom. 2015;8(1):45-52.