[1] Brzycki, B., Giesler, M., Gomez, K., Odom, L. H. and Suceavă, B. D., A Ladder
of curvatures for hypersurfaces in Euclidean ambient space, to appear in Houston J. Math.
[2] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds, Arch.
Math., 60 (1993), 568–578.
[3] Chen, B.-Y., Mean curvature and shape operator of isometric immersions in real-space- forms,
Glasgow Math.J. 38 (1996), 87–97.
[4] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with
arbitrary codimension, Glasgow Math. J., 41 (1999), 33–41.
[5] Chen, B.-Y., Some new obstructions to minimal and Lagrangian isometric immersions, Japanese J.
Math., 26 (2000), 105–127.
[6] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications, World Scien- tific,
2011.
[7] Conley, C. T. R., Etnyre, R., Gardener, B., Odom, L. H. and Suceav˘a, B. D., New Curvature
Inequalities for Hypersurfaces in the Euclidean Ambient Space, Taiwanese J. Math., 17 (3) (2013),
885–895.
[9] do Carmo, M. P., Riemannian Geometry, Birkhäuser, 1992.
[10] Hardy, G. H., Littlewood, J. E. and P´olya, G., Inequalities (Cambridge Mathematical Library),
Cambridge University Press; 2 edition, 1988.
[11] Hasanis, Th. and Vlachos, Th., Hypersurfaces in E4 with harmonic mean curvature
vector field, Math. Nachr. 172 (1995), 145–169.
[12] Hong, S., Matsumoto, K. and Tripathi, M., Certain basic inequalities for submanifolds of
locally conformal Kaehler space forms, Sci. Univ. Tokyo Journal of Mathematics, Vol. 41, No. 1
(2005), 75-94.
[13] Suceavă, B. D., Some remarks on B.-Y. Chen’s inequality involving classical invariants, Anal.
Sti. Univ. ”Al.I.Cuza” Iasi, s.I.a, Math., 64 (1999), 405–412.
[14] Suceava˘, B. D., The amalgamatic curvature and the orthocurvatures of three dimen- sional
hypersurfaces in E4 (to appear).
[15] Suceava˘, B. D. and Vajiac, M. B., Remarks on Chen’s fundamental inequality with classical
curvature invariants in Riemannian Spaces, Annals Sti. Univ. “Al. I. Cuza”,
s.I.a, Math. 54 (2008), no. 1, pp. 27–37.
[1] Brzycki, B., Giesler, M., Gomez, K., Odom, L. H. and Suceavă, B. D., A Ladder
of curvatures for hypersurfaces in Euclidean ambient space, to appear in Houston J. Math.
[2] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds, Arch.
Math., 60 (1993), 568–578.
[3] Chen, B.-Y., Mean curvature and shape operator of isometric immersions in real-space- forms,
Glasgow Math.J. 38 (1996), 87–97.
[4] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with
arbitrary codimension, Glasgow Math. J., 41 (1999), 33–41.
[5] Chen, B.-Y., Some new obstructions to minimal and Lagrangian isometric immersions, Japanese J.
Math., 26 (2000), 105–127.
[6] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications, World Scien- tific,
2011.
[7] Conley, C. T. R., Etnyre, R., Gardener, B., Odom, L. H. and Suceav˘a, B. D., New Curvature
Inequalities for Hypersurfaces in the Euclidean Ambient Space, Taiwanese J. Math., 17 (3) (2013),
885–895.
[9] do Carmo, M. P., Riemannian Geometry, Birkhäuser, 1992.
[10] Hardy, G. H., Littlewood, J. E. and P´olya, G., Inequalities (Cambridge Mathematical Library),
Cambridge University Press; 2 edition, 1988.
[11] Hasanis, Th. and Vlachos, Th., Hypersurfaces in E4 with harmonic mean curvature
vector field, Math. Nachr. 172 (1995), 145–169.
[12] Hong, S., Matsumoto, K. and Tripathi, M., Certain basic inequalities for submanifolds of
locally conformal Kaehler space forms, Sci. Univ. Tokyo Journal of Mathematics, Vol. 41, No. 1
(2005), 75-94.
[13] Suceavă, B. D., Some remarks on B.-Y. Chen’s inequality involving classical invariants, Anal.
Sti. Univ. ”Al.I.Cuza” Iasi, s.I.a, Math., 64 (1999), 405–412.
[14] Suceava˘, B. D., The amalgamatic curvature and the orthocurvatures of three dimen- sional
hypersurfaces in E4 (to appear).
[15] Suceava˘, B. D. and Vajiac, M. B., Remarks on Chen’s fundamental inequality with classical
curvature invariants in Riemannian Spaces, Annals Sti. Univ. “Al. I. Cuza”,
s.I.a, Math. 54 (2008), no. 1, pp. 27–37.
Suceavă, B. D. (2014). AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4. International Electronic Journal of Geometry, 7(2), 1-6. https://doi.org/10.36890/iejg.593970
AMA
Suceavă BD. AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4. Int. Electron. J. Geom. October 2014;7(2):1-6. doi:10.36890/iejg.593970
Chicago
Suceavă, Bogdan D. “AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4”. International Electronic Journal of Geometry 7, no. 2 (October 2014): 1-6. https://doi.org/10.36890/iejg.593970.
EndNote
Suceavă BD (October 1, 2014) AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4. International Electronic Journal of Geometry 7 2 1–6.
IEEE
B. D. Suceavă, “AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4”, Int. Electron. J. Geom., vol. 7, no. 2, pp. 1–6, 2014, doi: 10.36890/iejg.593970.
ISNAD
Suceavă, Bogdan D. “AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4”. International Electronic Journal of Geometry 7/2 (October 2014), 1-6. https://doi.org/10.36890/iejg.593970.
JAMA
Suceavă BD. AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4. Int. Electron. J. Geom. 2014;7:1–6.
MLA
Suceavă, Bogdan D. “AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4”. International Electronic Journal of Geometry, vol. 7, no. 2, 2014, pp. 1-6, doi:10.36890/iejg.593970.
Vancouver
Suceavă BD. AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E^4. Int. Electron. J. Geom. 2014;7(2):1-6.