Research Article
BibTex RIS Cite

THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION

Year 2014, Volume: 7 Issue: 1, 108 - 125, 30.04.2014
https://doi.org/10.36890/iejg.594500

Abstract

References

  • [1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris, 266(1968), 146–148.
  • [2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text in Math., 200, Springer, Berlin, 2000.
  • [3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954), 159–190.
  • [4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
  • [5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
  • [6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur- vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
  • [7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, 2000.
  • [8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24 (1972), 19–28.
  • [9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
  • [10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins- lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
  • [11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., 26 (1986), 647–665.
  • [12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Ōtsu, 1986.
  • [13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I. Cuza” Iasi, 30 (1974), 35–53.
  • [14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss., 101, Springer, Berlin, 1959.
  • [15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
  • [16] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501–507.
  • [17] Varga, O.,Über den inneren und induzierten Zusammenhang fu¨r Hyperflächen in Finsler- schen R¨aumen, Publ. Math. Debrecen, 8 (1961), 208–217.
  • [18] Wegener, J.M., Hyperfächen in Finslerschen R¨aumen als Transversalfla¨chen einer Schar von Extremalen, Monatsh. Math. Phys., 44 (1936), 115–130.
Year 2014, Volume: 7 Issue: 1, 108 - 125, 30.04.2014
https://doi.org/10.36890/iejg.594500

Abstract

References

  • [1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris, 266(1968), 146–148.
  • [2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text in Math., 200, Springer, Berlin, 2000.
  • [3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954), 159–190.
  • [4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
  • [5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
  • [6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur- vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
  • [7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, 2000.
  • [8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24 (1972), 19–28.
  • [9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
  • [10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins- lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
  • [11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., 26 (1986), 647–665.
  • [12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Ōtsu, 1986.
  • [13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I. Cuza” Iasi, 30 (1974), 35–53.
  • [14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss., 101, Springer, Berlin, 1959.
  • [15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
  • [16] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501–507.
  • [17] Varga, O.,Über den inneren und induzierten Zusammenhang fu¨r Hyperflächen in Finsler- schen R¨aumen, Publ. Math. Debrecen, 8 (1961), 208–217.
  • [18] Wegener, J.M., Hyperfächen in Finslerschen R¨aumen als Transversalfla¨chen einer Schar von Extremalen, Monatsh. Math. Phys., 44 (1936), 115–130.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Aurel Bejancu

Hani Reda Farran This is me

Publication Date April 30, 2014
Published in Issue Year 2014 Volume: 7 Issue: 1

Cite

APA Bejancu, A., & Farran, H. R. (2014). THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry, 7(1), 108-125. https://doi.org/10.36890/iejg.594500
AMA Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. April 2014;7(1):108-125. doi:10.36890/iejg.594500
Chicago Bejancu, Aurel, and Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 108-25. https://doi.org/10.36890/iejg.594500.
EndNote Bejancu A, Farran HR (April 1, 2014) THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry 7 1 108–125.
IEEE A. Bejancu and H. R. Farran, “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 108–125, 2014, doi: 10.36890/iejg.594500.
ISNAD Bejancu, Aurel - Farran, Hani Reda. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7/1 (April 2014), 108-125. https://doi.org/10.36890/iejg.594500.
JAMA Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7:108–125.
MLA Bejancu, Aurel and Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 108-25, doi:10.36890/iejg.594500.
Vancouver Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7(1):108-25.