[1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris,
266(1968), 146–148.
[2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text
in Math., 200, Springer, Berlin, 2000.
[3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954),
159–190.
[4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
[5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
[6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur-
vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
[7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic
Publishers, Dordrecht, 2000.
[8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24
(1972), 19–28.
[9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans
les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
[10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins-
lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
[11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space,
J. Math. Kyoto Univ., 26 (1986), 647–665.
[12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces,
Kaiseisha Press, Saikawa, Ōtsu, 1986.
[13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I.
Cuza” Iasi, 30 (1974), 35–53.
[14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss.,
101, Springer, Berlin, 1959.
[15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
[1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris,
266(1968), 146–148.
[2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text
in Math., 200, Springer, Berlin, 2000.
[3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954),
159–190.
[4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
[5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
[6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur-
vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
[7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic
Publishers, Dordrecht, 2000.
[8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24
(1972), 19–28.
[9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans
les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
[10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins-
lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
[11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space,
J. Math. Kyoto Univ., 26 (1986), 647–665.
[12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces,
Kaiseisha Press, Saikawa, Ōtsu, 1986.
[13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I.
Cuza” Iasi, 30 (1974), 35–53.
[14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss.,
101, Springer, Berlin, 1959.
[15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
Bejancu, A., & Farran, H. R. (2014). THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry, 7(1), 108-125. https://doi.org/10.36890/iejg.594500
AMA
Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. April 2014;7(1):108-125. doi:10.36890/iejg.594500
Chicago
Bejancu, Aurel, and Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 108-25. https://doi.org/10.36890/iejg.594500.
EndNote
Bejancu A, Farran HR (April 1, 2014) THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry 7 1 108–125.
IEEE
A. Bejancu and H. R. Farran, “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 108–125, 2014, doi: 10.36890/iejg.594500.
ISNAD
Bejancu, Aurel - Farran, Hani Reda. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7/1 (April 2014), 108-125. https://doi.org/10.36890/iejg.594500.
JAMA
Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7:108–125.
MLA
Bejancu, Aurel and Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 108-25, doi:10.36890/iejg.594500.
Vancouver
Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7(1):108-25.