[1] Abbati, M.C. and Mania, A., On differential structure for projective limits of manifolds, J.
Geom. Phys. 29(1999), 35-63.
[2] Aghasi, M., Dodson, C.T.J., Galanis, G.N. and Suri, A., Infinite dimensional second order
ordinary differential equations via T 2M , J. Nonlinear Analysis. 67(2007), 2829-2838.
[3] Aghasi, M. and Suri, A., Ordinary differential equations on infinite dimensional manifolds,
Balkan journal of geometry and its applications, 12(2007), No. 1, 1-8.
[4] Aghasi, M. and Suri, A., Splitting theorems for the double tangent bundles of Fr´echet mani-
folds, Balkan journal of geometry and its applications, 15(2010), No.2, 1-13.
[5] Ashtekar, A. and Lewandowski, J., Differential geometry on the space of connections via
graphs and projective limits, J. Geo. Phys., 17(1995), 191-230.
[6] Francesco, B. and Lewis A., Geometric control of mechanical systems, Springer, 2004.
[7] Del Riego, L. and Parker, P.E., Geometry of nonlinear connections, J. Nonlinear Analysis,
63(2005), 501-510.
[8] Eliasson, H. I., Geometry of manifolds of maps, J. Diff. Geo., 1(1967), 169-194.
[9] Galanis, G.N., Differential and Geometric Structure for the Tangent Bundle of a Projective
Limit Manifold, Rendiconti del Seminario Matematico di Padova, 112(2004).
[10] Hamilton, R.S., The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc.,
7(1982), 65-222.
[11] Klingenberg, W., Riemannian geometry, Walter de Gruyter, Berlin, 1995.
[12] Lang, S., Fundumentals of differential geometry, Graduate Texts in Mathematics, Vol. 191,
Springer-Verlag, New York, 1999.
[1] Abbati, M.C. and Mania, A., On differential structure for projective limits of manifolds, J.
Geom. Phys. 29(1999), 35-63.
[2] Aghasi, M., Dodson, C.T.J., Galanis, G.N. and Suri, A., Infinite dimensional second order
ordinary differential equations via T 2M , J. Nonlinear Analysis. 67(2007), 2829-2838.
[3] Aghasi, M. and Suri, A., Ordinary differential equations on infinite dimensional manifolds,
Balkan journal of geometry and its applications, 12(2007), No. 1, 1-8.
[4] Aghasi, M. and Suri, A., Splitting theorems for the double tangent bundles of Fr´echet mani-
folds, Balkan journal of geometry and its applications, 15(2010), No.2, 1-13.
[5] Ashtekar, A. and Lewandowski, J., Differential geometry on the space of connections via
graphs and projective limits, J. Geo. Phys., 17(1995), 191-230.
[6] Francesco, B. and Lewis A., Geometric control of mechanical systems, Springer, 2004.
[7] Del Riego, L. and Parker, P.E., Geometry of nonlinear connections, J. Nonlinear Analysis,
63(2005), 501-510.
[8] Eliasson, H. I., Geometry of manifolds of maps, J. Diff. Geo., 1(1967), 169-194.
[9] Galanis, G.N., Differential and Geometric Structure for the Tangent Bundle of a Projective
Limit Manifold, Rendiconti del Seminario Matematico di Padova, 112(2004).
[10] Hamilton, R.S., The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc.,
7(1982), 65-222.
[11] Klingenberg, W., Riemannian geometry, Walter de Gruyter, Berlin, 1995.
[12] Lang, S., Fundumentals of differential geometry, Graduate Texts in Mathematics, Vol. 191,
Springer-Verlag, New York, 1999.
Surı, A., & Aghası, M. (2013). CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS. International Electronic Journal of Geometry, 6(2), 45-56.
AMA
Surı A, Aghası M. CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS. Int. Electron. J. Geom. October 2013;6(2):45-56.
Chicago
Surı, Ali, and Mansour Aghası. “CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 45-56.
EndNote
Surı A, Aghası M (October 1, 2013) CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS. International Electronic Journal of Geometry 6 2 45–56.
IEEE
A. Surı and M. Aghası, “CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 45–56, 2013.
ISNAD
Surı, Ali - Aghası, Mansour. “CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS”. International Electronic Journal of Geometry 6/2 (October 2013), 45-56.
JAMA
Surı A, Aghası M. CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS. Int. Electron. J. Geom. 2013;6:45–56.
MLA
Surı, Ali and Mansour Aghası. “CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 45-56.
Vancouver
Surı A, Aghası M. CONNECTIONS AND SECOND ORDER DIFFERENTIAL EQUATIONS ON INFINITE DIMENSIONAL MANIFOLDS. Int. Electron. J. Geom. 2013;6(2):45-56.