[1] V. Barone Adesi and F. Serra Cassano and D. Vittone, The Bernstein problem for intrinsic
graphs in Heisenberg groups and calibrations, Calc. Var and PDE, 30(2007) no.1 , 17-49.
[2] Z. Balogh, Size of Characteristic Sets and Functions with Prescribed Gradient., J. fr die Reine
und Angewandte Mathematik, 564(2003), 63-83.
[3] Bonk, M. and Capogna, L, Mean curvature flow in the Heisenberg group, 2005, preprint.
[4] Bryant, R. and Griffiths, P. and Grossman, D., Exterior differential systems and Euler-
Lagrange partial differential equations, Chicago Lectures in Mathematics, Chicago, IL, 2003.
[5] Capogna, L. and Danielli, D. and Pauls, S. and Tyson, J., An introduction to the Heisen- berg group
and the sub-Riemannian isoperimetric problem, Progress in Mathematics, 259,
Birkhauser, Basel, 2007.
[6] Cheng J.-H. and Hwang J.-F.and Malchiodi, A. and Yang, P., Minimal surfaces in pseudo-
hermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(2005), no. 1, 129-177.
[7] Cheng J.-H. and Hwang J.-F. and Yang, P., Existence and uniqueness of p-area minimizers in the
Heisenberg group, Math. Ann. 337(2007), no.2, 253-293.
[8] Citti, G. and Sarti, A., A cortical based model of perceptual completion in the
Roto- Translation space, J. Math. Imaging Vis. 24(2006), 307326.
[9] Cole, D., On minimal surfaces in Martinet-type spaces., Ph.D. Thesis, Dartmouth College, 2005.
[10] Danielli, D. and Garofalo, N. and Nhieu, D.-M., Sub-Riemannian calculus on hypersurfaces in
Carnot groups, Adv. Math 215(2007), no. 1, 292-378.
[11] Danielli, D. and Garofalo, N. and Nhieu, D.-M., Minimal surfaces, surfaces of constant mean
curvature and isoperimetry in Carnot groups, 2001, preprint.
[12] , Danielli, D. and Garofalo, N. and Nhieu, D.-M., A notable family of entire intrinsic min-
imal graphs in the Heisenberg group which are not perimeter minimizing, Amer. J. Math.
130(2008), no. 2, 317-339.
[13] , Danielli, D. and Garofalo, N. and Nhieu, D.-M. and Pauls, S.,Instability of graphical strips
and a positive answer to the Bernstein problem in the Heisenberg group , J. Diff. Geom. 81(2009),
no. 2, 251-295.
[14] Danielli, D. and Garofalo, N. and Nhieu, D.-M. and Pauls, S., Stable C2
complete embedded noncharacteristic H-minimal surfaces are vertical planes, preprint, arXiv:0903.4296
[math.DG].
[15] Derridj, M., Sur un th´eor`eme de traces, Ann. de l’institut Fourier 22(1972), no. 2, 73-83.
[16] do Carmo, M. and Peng, C. K.,Stable complete minimal surfaces in R3 are planes, Bull.
Amer. Math. Soc. (N.S.) 1(1979), no. 6, 903-906.
[17] Fischer-Colbrie, D. and Schoen, R., The structure of complete stable minimal surfaces in
3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33(1980), no. 2, 199- 211.
[18] Garofalo, N. and Pauls, S., The Bernstein problem in the Heisenberg group., preprint,
arXiv:math/0209065 [math.DG].
[20] Hladky, R. and Pauls, S., Constant Mean Curvature Surfaces in sub-Riemannian Geometry, J.
Diff. Geom. 79(2008), no. 1, 111-139.
[21] Hladky, R., Connections and curvature in sub-Riemannian geometry, Houston J. Math.
38(2012), no. 4, 1107-1134.
[22] Hoffman, W., The visual cortex is a contact bundle, Appl. Math. Comput. 32(1989), no. 2-3,
137-167.
[23] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, John Wiley & Sons, Inc.,
1963.
[24] Leonardi, G. P. and Rigot, S., Isoperimetric sets on Carnot groups, Houston J. Math.
29(2003), no. 3, 609-637.
[25] Magnani, V., Characteristic points, rectifiability and perimeter measure on stratified groups,
J. Eur. Math. Soc. 8(2006), no. 4, 585-609.
[26] Magnani, V., Differentiability and Area Fomula on Stratified Lie groups, preprint.
[27] Montefalcone,F., Hypersurfaces and variational formulas in sub-Riemannian Carnot groups, J.
Math. Pures Appl. 87(2007), 453-494.
[28] Monti, R. and Rickly, M., Convex isoperimetric sets in the Heisenberg group, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 8 (2009), no. 2, 391-415.
[29] Pansu, P., M´etriques de Carnot-Carath´eodory et quasiisom´etries des espaces sym´etriques de
rang un, Annals of Mathematics (2) 129(1989), no. 1, 1-60.
[30] Pauls, S., Minimal surfaces in the Heisenberg group., Geom. Ded. 104(2004), 201-231.
[31] Petitot, J., The neurogeometry of pinwheels as a sub-Riemannian contact structure, J. Phys-
iology 97(2003), 265–309.
[32] J. Petitot and Y. Tondut, Vers une neuro-geometrie. Fibrations corticales, structures de
contact et contours subjectifs modaux., Math., Info. et Sc. Hum., EHESS, Paris 145(1998), 5–101.
[33] Ritor´e, M. and Rosales, C., Area-stationary surfaces in the Heisenberg group H1, Mat. Con-
temp. 35 (2008), 185-203.
[34] Ritor´e, M. and Rosales, C., Rotationally invariant hypersurfaces with constant mean curva-
ture in the Heisenberg group Hn, J. Geom. Anal. 16 (2006), no. 4, 703720.
[35] Selby, C., Geometry of hypersurfaces in Carnot groups of step two., Ph.D. Thesis, Purdue
University, 2006.
[1] V. Barone Adesi and F. Serra Cassano and D. Vittone, The Bernstein problem for intrinsic
graphs in Heisenberg groups and calibrations, Calc. Var and PDE, 30(2007) no.1 , 17-49.
[2] Z. Balogh, Size of Characteristic Sets and Functions with Prescribed Gradient., J. fr die Reine
und Angewandte Mathematik, 564(2003), 63-83.
[3] Bonk, M. and Capogna, L, Mean curvature flow in the Heisenberg group, 2005, preprint.
[4] Bryant, R. and Griffiths, P. and Grossman, D., Exterior differential systems and Euler-
Lagrange partial differential equations, Chicago Lectures in Mathematics, Chicago, IL, 2003.
[5] Capogna, L. and Danielli, D. and Pauls, S. and Tyson, J., An introduction to the Heisen- berg group
and the sub-Riemannian isoperimetric problem, Progress in Mathematics, 259,
Birkhauser, Basel, 2007.
[6] Cheng J.-H. and Hwang J.-F.and Malchiodi, A. and Yang, P., Minimal surfaces in pseudo-
hermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(2005), no. 1, 129-177.
[7] Cheng J.-H. and Hwang J.-F. and Yang, P., Existence and uniqueness of p-area minimizers in the
Heisenberg group, Math. Ann. 337(2007), no.2, 253-293.
[8] Citti, G. and Sarti, A., A cortical based model of perceptual completion in the
Roto- Translation space, J. Math. Imaging Vis. 24(2006), 307326.
[9] Cole, D., On minimal surfaces in Martinet-type spaces., Ph.D. Thesis, Dartmouth College, 2005.
[10] Danielli, D. and Garofalo, N. and Nhieu, D.-M., Sub-Riemannian calculus on hypersurfaces in
Carnot groups, Adv. Math 215(2007), no. 1, 292-378.
[11] Danielli, D. and Garofalo, N. and Nhieu, D.-M., Minimal surfaces, surfaces of constant mean
curvature and isoperimetry in Carnot groups, 2001, preprint.
[12] , Danielli, D. and Garofalo, N. and Nhieu, D.-M., A notable family of entire intrinsic min-
imal graphs in the Heisenberg group which are not perimeter minimizing, Amer. J. Math.
130(2008), no. 2, 317-339.
[13] , Danielli, D. and Garofalo, N. and Nhieu, D.-M. and Pauls, S.,Instability of graphical strips
and a positive answer to the Bernstein problem in the Heisenberg group , J. Diff. Geom. 81(2009),
no. 2, 251-295.
[14] Danielli, D. and Garofalo, N. and Nhieu, D.-M. and Pauls, S., Stable C2
complete embedded noncharacteristic H-minimal surfaces are vertical planes, preprint, arXiv:0903.4296
[math.DG].
[15] Derridj, M., Sur un th´eor`eme de traces, Ann. de l’institut Fourier 22(1972), no. 2, 73-83.
[16] do Carmo, M. and Peng, C. K.,Stable complete minimal surfaces in R3 are planes, Bull.
Amer. Math. Soc. (N.S.) 1(1979), no. 6, 903-906.
[17] Fischer-Colbrie, D. and Schoen, R., The structure of complete stable minimal surfaces in
3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33(1980), no. 2, 199- 211.
[18] Garofalo, N. and Pauls, S., The Bernstein problem in the Heisenberg group., preprint,
arXiv:math/0209065 [math.DG].
[20] Hladky, R. and Pauls, S., Constant Mean Curvature Surfaces in sub-Riemannian Geometry, J.
Diff. Geom. 79(2008), no. 1, 111-139.
[21] Hladky, R., Connections and curvature in sub-Riemannian geometry, Houston J. Math.
38(2012), no. 4, 1107-1134.
[22] Hoffman, W., The visual cortex is a contact bundle, Appl. Math. Comput. 32(1989), no. 2-3,
137-167.
[23] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, John Wiley & Sons, Inc.,
1963.
[24] Leonardi, G. P. and Rigot, S., Isoperimetric sets on Carnot groups, Houston J. Math.
29(2003), no. 3, 609-637.
[25] Magnani, V., Characteristic points, rectifiability and perimeter measure on stratified groups,
J. Eur. Math. Soc. 8(2006), no. 4, 585-609.
[26] Magnani, V., Differentiability and Area Fomula on Stratified Lie groups, preprint.
[27] Montefalcone,F., Hypersurfaces and variational formulas in sub-Riemannian Carnot groups, J.
Math. Pures Appl. 87(2007), 453-494.
[28] Monti, R. and Rickly, M., Convex isoperimetric sets in the Heisenberg group, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 8 (2009), no. 2, 391-415.
[29] Pansu, P., M´etriques de Carnot-Carath´eodory et quasiisom´etries des espaces sym´etriques de
rang un, Annals of Mathematics (2) 129(1989), no. 1, 1-60.
[30] Pauls, S., Minimal surfaces in the Heisenberg group., Geom. Ded. 104(2004), 201-231.
[31] Petitot, J., The neurogeometry of pinwheels as a sub-Riemannian contact structure, J. Phys-
iology 97(2003), 265–309.
[32] J. Petitot and Y. Tondut, Vers une neuro-geometrie. Fibrations corticales, structures de
contact et contours subjectifs modaux., Math., Info. et Sc. Hum., EHESS, Paris 145(1998), 5–101.
[33] Ritor´e, M. and Rosales, C., Area-stationary surfaces in the Heisenberg group H1, Mat. Con-
temp. 35 (2008), 185-203.
[34] Ritor´e, M. and Rosales, C., Rotationally invariant hypersurfaces with constant mean curva-
ture in the Heisenberg group Hn, J. Geom. Anal. 16 (2006), no. 4, 703720.
[35] Selby, C., Geometry of hypersurfaces in Carnot groups of step two., Ph.D. Thesis, Purdue
University, 2006.
Hladky, R. K., & Pauls, S. D. (2013). VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY. International Electronic Journal of Geometry, 6(1), 8-40.
AMA
Hladky RK, Pauls SD. VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY. Int. Electron. J. Geom. April 2013;6(1):8-40.
Chicago
Hladky, Robert K., and Scott D. Pauls. “VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 8-40.
EndNote
Hladky RK, Pauls SD (April 1, 2013) VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY. International Electronic Journal of Geometry 6 1 8–40.
IEEE
R. K. Hladky and S. D. Pauls, “VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 8–40, 2013.
ISNAD
Hladky, Robert K. - Pauls, Scott D. “VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY”. International Electronic Journal of Geometry 6/1 (April 2013), 8-40.
JAMA
Hladky RK, Pauls SD. VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY. Int. Electron. J. Geom. 2013;6:8–40.
MLA
Hladky, Robert K. and Scott D. Pauls. “VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 8-40.
Vancouver
Hladky RK, Pauls SD. VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY. Int. Electron. J. Geom. 2013;6(1):8-40.