[1] Asil, V. and Bekta¸s, M. On a characterization of helix for curves of the Heisenberg group.
Int. Journal of Pure and Applied Mathematics, V 15 No. 4 (2004), 491-495.
[2] Balgetir, H., Bekta¸s, M. Ergu¨t, M., On a characterization of null helix. Bull. Ins. Math.
Aca.Sin., 29, No. 1 (2001), 71-78.
[3] Caddeo, R., Oniciuc, C. and Piu, P. Explicit formulas for non-geodesic biharmonic curves of
the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino, Vol 62 (3), (2004), 265-277.
[4] Chen, B.-Y. and Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac.
Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
[5] Eells, J., Sampson, J.H. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964),
109-160.
[6] Ekmekçi, N., Hacisalihog˘lu, H.H. On helices of a Lorentzian manifold. Commun. Fac. Sci.,
Univ. Ank. Series A1 (1996), 45-50.
[7] Ekmekçi, N., I˙larslan, K. On characterization of general helices in Lorentzian space.
HadronicJ. 23 (2000), no. 6, 677-682.
[8] Ekmekci, N. On general helices and pseudo-Riemannian manifolds. Comm. Fac. Sci. Univ.
Ankara. Series A1 V. 47. (1998), 45-49.
[9] Ikawa, T. On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba J.
Math., 9 (1985), 353-371.
[10] İlarslan, K. Characterizations of spacelike general helices in Lorentzian manifolds.
KragujevacJ. Math. 25 (2003), 209-218.
[11] Nakanishi, Y. On helices and pseudo-Riemannian submanifolds. Tsukaba J. Math. 12 (1988),
469-476.
[12] Ogrenmis, A. O., Ergut, M. and Bektas, M. On the helices in the Galilean space G3. Iranian
Journal of Science and Technology, Transaction A, Vol. 31 (2007).
[13] Rahmani, S. Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois.
Journal of Geometry and Physics 9 (1992), 295-302.
[14] Struik, D. J. Lectures on classical differential geometry. Dover, New-York, 1988.
Year 2013,
Volume: 6 Issue: 1, 46 - 55, 30.04.2013
[1] Asil, V. and Bekta¸s, M. On a characterization of helix for curves of the Heisenberg group.
Int. Journal of Pure and Applied Mathematics, V 15 No. 4 (2004), 491-495.
[2] Balgetir, H., Bekta¸s, M. Ergu¨t, M., On a characterization of null helix. Bull. Ins. Math.
Aca.Sin., 29, No. 1 (2001), 71-78.
[3] Caddeo, R., Oniciuc, C. and Piu, P. Explicit formulas for non-geodesic biharmonic curves of
the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino, Vol 62 (3), (2004), 265-277.
[4] Chen, B.-Y. and Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac.
Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
[5] Eells, J., Sampson, J.H. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964),
109-160.
[6] Ekmekçi, N., Hacisalihog˘lu, H.H. On helices of a Lorentzian manifold. Commun. Fac. Sci.,
Univ. Ank. Series A1 (1996), 45-50.
[7] Ekmekçi, N., I˙larslan, K. On characterization of general helices in Lorentzian space.
HadronicJ. 23 (2000), no. 6, 677-682.
[8] Ekmekci, N. On general helices and pseudo-Riemannian manifolds. Comm. Fac. Sci. Univ.
Ankara. Series A1 V. 47. (1998), 45-49.
[9] Ikawa, T. On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba J.
Math., 9 (1985), 353-371.
[10] İlarslan, K. Characterizations of spacelike general helices in Lorentzian manifolds.
KragujevacJ. Math. 25 (2003), 209-218.
[11] Nakanishi, Y. On helices and pseudo-Riemannian submanifolds. Tsukaba J. Math. 12 (1988),
469-476.
[12] Ogrenmis, A. O., Ergut, M. and Bektas, M. On the helices in the Galilean space G3. Iranian
Journal of Science and Technology, Transaction A, Vol. 31 (2007).
[13] Rahmani, S. Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois.
Journal of Geometry and Physics 9 (1992), 295-302.
[14] Struik, D. J. Lectures on classical differential geometry. Dover, New-York, 1988.
Senoussı, B., & Bekkar, M. (2013). CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. International Electronic Journal of Geometry, 6(1), 46-55.
AMA
Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. April 2013;6(1):46-55.
Chicago
Senoussı, Bendehiba, and Mohammed Bekkar. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 46-55.
EndNote
Senoussı B, Bekkar M (April 1, 2013) CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. International Electronic Journal of Geometry 6 1 46–55.
IEEE
B. Senoussı and M. Bekkar, “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 46–55, 2013.
ISNAD
Senoussı, Bendehiba - Bekkar, Mohammed. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry 6/1 (April 2013), 46-55.
JAMA
Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. 2013;6:46–55.
MLA
Senoussı, Bendehiba and Mohammed Bekkar. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 46-55.
Vancouver
Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. 2013;6(1):46-55.