Research Article
BibTex RIS Cite

VISUAL DISTINGUISHABILITY OF SEGMENTS

Year 2013, Volume: 6 Issue: 1, 56 - 67, 30.04.2013

Abstract


References

  • [1] Brieskorn, E. and Knörrer, H., Plane algebraic curves, Birkhäuser Verlag, Basel, 1986.
  • [2] Gardner, R. J., Geometric tomography, Encyclopedia of Math. and its Appl. 58, Cambridge University Press, Cambridge, 2006 (first edition in 1996).
  • [3] Kincses, J., The determination of a convex set from its angle function, Discrete Comput. Geom., 30 (2003), 287–297.
  • [4] Kincses, J. and Kurusa, Á ., Can you recognize the shape of a figure from its shadows?, Beiträge zur Alg. und Geom., 36 (1995), 25–34.
  • [5] Kincses, J., An example of a stable, even order Quadrangle which is determined by its angle function, Discrete Geometry, in honor of W. Kuperberg’s 60th birthday (ed.: A. Bezdek), CRC Press (Marcel Dekker), New York – Basel, 2003, 367–372.
  • [6] Kurusa, Á., You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59 (1996), 103–112.
  • [7] Kurusa, Á., The shadow picture problem for nonintersecting curves, Geom. Dedicata, 59 (1996), 113–125.
  • [8] Kurusa, Á ., Is a convex plane body determined by an isoptic?, Beiträge Algebra Geom., 53 (2012), 281–294; DOI: 10.1007/s13366-011-0074-2.
  • [9] Kurusa, Á ., Equioptics of segments: generalizing Apollonius’ theorem, Polygon, 21 (2013), 43–57 (in hungarian: “Szakaszok ekvioptikusai: Apoll´oniosz t´etel´enek ´altala´nos´ıt´asa”).
  • [10] Kurusa, Á., Visual distinguishability of polygons, Beitra¨ge Algebra Geom. (2013), DOI: 10.1007/s13366-012-0121-7.
  • [11] Pamfilos, P. and Thoma, A., Apollonian cubics: An application of group theory to a problem in Euclidean geometry, Mathematics Magazine, 72 (1999), 356–366.
  • [12] Pamfilos, P., Theory of Isoptic cubics, Help file of Isoptikon program that is freely availableat http://www.math.uoc.gr/∼pamfilos/#iso , 1998.
Year 2013, Volume: 6 Issue: 1, 56 - 67, 30.04.2013

Abstract

References

  • [1] Brieskorn, E. and Knörrer, H., Plane algebraic curves, Birkhäuser Verlag, Basel, 1986.
  • [2] Gardner, R. J., Geometric tomography, Encyclopedia of Math. and its Appl. 58, Cambridge University Press, Cambridge, 2006 (first edition in 1996).
  • [3] Kincses, J., The determination of a convex set from its angle function, Discrete Comput. Geom., 30 (2003), 287–297.
  • [4] Kincses, J. and Kurusa, Á ., Can you recognize the shape of a figure from its shadows?, Beiträge zur Alg. und Geom., 36 (1995), 25–34.
  • [5] Kincses, J., An example of a stable, even order Quadrangle which is determined by its angle function, Discrete Geometry, in honor of W. Kuperberg’s 60th birthday (ed.: A. Bezdek), CRC Press (Marcel Dekker), New York – Basel, 2003, 367–372.
  • [6] Kurusa, Á., You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59 (1996), 103–112.
  • [7] Kurusa, Á., The shadow picture problem for nonintersecting curves, Geom. Dedicata, 59 (1996), 113–125.
  • [8] Kurusa, Á ., Is a convex plane body determined by an isoptic?, Beiträge Algebra Geom., 53 (2012), 281–294; DOI: 10.1007/s13366-011-0074-2.
  • [9] Kurusa, Á ., Equioptics of segments: generalizing Apollonius’ theorem, Polygon, 21 (2013), 43–57 (in hungarian: “Szakaszok ekvioptikusai: Apoll´oniosz t´etel´enek ´altala´nos´ıt´asa”).
  • [10] Kurusa, Á., Visual distinguishability of polygons, Beitra¨ge Algebra Geom. (2013), DOI: 10.1007/s13366-012-0121-7.
  • [11] Pamfilos, P. and Thoma, A., Apollonian cubics: An application of group theory to a problem in Euclidean geometry, Mathematics Magazine, 72 (1999), 356–366.
  • [12] Pamfilos, P., Theory of Isoptic cubics, Help file of Isoptikon program that is freely availableat http://www.math.uoc.gr/∼pamfilos/#iso , 1998.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

árpád Kurusa This is me

Publication Date April 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 1

Cite

APA Kurusa, á. (2013). VISUAL DISTINGUISHABILITY OF SEGMENTS. International Electronic Journal of Geometry, 6(1), 56-67.
AMA Kurusa á. VISUAL DISTINGUISHABILITY OF SEGMENTS. Int. Electron. J. Geom. April 2013;6(1):56-67.
Chicago Kurusa, árpád. “VISUAL DISTINGUISHABILITY OF SEGMENTS”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 56-67.
EndNote Kurusa á (April 1, 2013) VISUAL DISTINGUISHABILITY OF SEGMENTS. International Electronic Journal of Geometry 6 1 56–67.
IEEE á. Kurusa, “VISUAL DISTINGUISHABILITY OF SEGMENTS”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 56–67, 2013.
ISNAD Kurusa, árpád. “VISUAL DISTINGUISHABILITY OF SEGMENTS”. International Electronic Journal of Geometry 6/1 (April 2013), 56-67.
JAMA Kurusa á. VISUAL DISTINGUISHABILITY OF SEGMENTS. Int. Electron. J. Geom. 2013;6:56–67.
MLA Kurusa, árpád. “VISUAL DISTINGUISHABILITY OF SEGMENTS”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 56-67.
Vancouver Kurusa á. VISUAL DISTINGUISHABILITY OF SEGMENTS. Int. Electron. J. Geom. 2013;6(1):56-67.