Research Article
BibTex RIS Cite

RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS

Year 2013, Volume: 6 Issue: 1, 89 - 99, 30.04.2013

Abstract


References

  • [1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom. 4 (2)(1970), 155-167.
  • [2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990), 151-161.
  • [3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985), 89-104.
  • [4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World Scientific, 2004.
  • [5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal 22 (1970), 362-370.
  • [6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971), 456-474.
  • [7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math. 37 (2013), 114-128.
  • [8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian submersions.Bull. Malays. Math. Sci. Soc. In Press.
  • [9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737.
  • [10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani- folds. Acta Appl. Math. 104 (2008), 83-89.
  • [11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds. Geom. Dedicata 110 (2005), 191-211.
  • [12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459 469.
  • [13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8 (2010), 437-447.
  • [14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85 (1999), 229-239.
  • [15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures. Mediterr. j. math. 3 (2006),533-547.
  • [16] Vaisman, I., Generalized Hopf manifolds. Geom. Dedicata 13 (1982), 231-255.
  • [17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec. Torino (1984), special issue.
  • [18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 97-115.
  • [19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann. Polon. Math. 98 (2010), 301-309.
  • [20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21] Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
  • [22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14 63),99-109.
Year 2013, Volume: 6 Issue: 1, 89 - 99, 30.04.2013

Abstract

References

  • [1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom. 4 (2)(1970), 155-167.
  • [2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990), 151-161.
  • [3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985), 89-104.
  • [4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World Scientific, 2004.
  • [5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal 22 (1970), 362-370.
  • [6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971), 456-474.
  • [7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math. 37 (2013), 114-128.
  • [8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian submersions.Bull. Malays. Math. Sci. Soc. In Press.
  • [9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737.
  • [10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani- folds. Acta Appl. Math. 104 (2008), 83-89.
  • [11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds. Geom. Dedicata 110 (2005), 191-211.
  • [12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459 469.
  • [13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8 (2010), 437-447.
  • [14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85 (1999), 229-239.
  • [15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures. Mediterr. j. math. 3 (2006),533-547.
  • [16] Vaisman, I., Generalized Hopf manifolds. Geom. Dedicata 13 (1982), 231-255.
  • [17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec. Torino (1984), special issue.
  • [18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 97-115.
  • [19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann. Polon. Math. 98 (2010), 301-309.
  • [20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21] Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
  • [22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14 63),99-109.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Yilmaz Gündüzalp

Publication Date April 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 1

Cite

APA Gündüzalp, Y. (2013). RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. International Electronic Journal of Geometry, 6(1), 89-99.
AMA Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. April 2013;6(1):89-99.
Chicago Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 89-99.
EndNote Gündüzalp Y (April 1, 2013) RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. International Electronic Journal of Geometry 6 1 89–99.
IEEE Y. Gündüzalp, “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 89–99, 2013.
ISNAD Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry 6/1 (April 2013), 89-99.
JAMA Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. 2013;6:89–99.
MLA Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 89-99.
Vancouver Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. 2013;6(1):89-9.