[1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom.
4 (2)(1970), 155-167.
[2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field
on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990),
151-161.
[3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985),
89-104.
[4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World
Scientific, 2004.
[5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal
22 (1970), 362-370.
[6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971),
456-474.
[7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math.
37 (2013), 114-128.
[8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian
submersions.Bull. Malays. Math. Sci. Soc. In Press.
[9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16 (1967), 715-737.
[10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104 (2008), 83-89.
[11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds.
Geom. Dedicata 110 (2005), 191-211.
[12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459
469.
[13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent.
Eur. J. Math. 8 (2010), 437-447.
[14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85
(1999), 229-239.
[15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures.
Mediterr. j. math. 3 (2006),533-547.
[17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec.
Torino (1984), special issue.
[18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26
(1972), 97-115.
[19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann.
Polon. Math. 98 (2010), 301-309.
[20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21]
Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
[22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14
63),99-109.
Year 2013,
Volume: 6 Issue: 1, 89 - 99, 30.04.2013
[1] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s). J. Differential Geom.
4 (2)(1970), 155-167.
[2] Cabrerizo, J.L., Fernandez, L.M. and Fernandez, M., The curvature tensor field
on f −manifold with complemented frames. An. Univ. ’Al.I.Cuza’, Ia.si, Matematica 36 (1990),
151-161.
[3] Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, II Ser. 34 (1985),
89-104.
[4] Falcitelli, M., Ianus., S. and Pastore, A.M., Riemannian submersions and related topics. World
Scientific, 2004.
[5] Goldberg, S.I. and Yano, K., On normal globally framed f −manifolds. Toˆhoku Math. Journal
22 (1970), 362-370.
[6] Goldberg, S.I. and Yano, K., Globally framed f −manifolds. Illinois Math. Journal 22 (1971),
456-474.
[7] Gündüzalp, Y. and S. ahin, B., Paracontact semi-Riemannian submersions. Turkish J.Math.
37 (2013), 114-128.
[8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian
submersions.Bull. Malays. Math. Sci. Soc. In Press.
[9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16 (1967), 715-737.
[10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104 (2008), 83-89.
[11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds.
Geom. Dedicata 110 (2005), 191-211.
[12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459
469.
[13] Şahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent.
Eur. J. Math. 8 (2010), 437-447.
[14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85
(1999), 229-239.
[15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures.
Mediterr. j. math. 3 (2006),533-547.
[17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec.
Torino (1984), special issue.
[18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26
(1972), 97-115.
[19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Ka¨hler manifolds. Ann.
Polon. Math. 98 (2010), 301-309.
[20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165. [21]
Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
[22] Yano, K., On a structure defined by a tensor field f satisfying f 3 + f = 0. Tensor 14
63),99-109.
Gündüzalp, Y. (2013). RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. International Electronic Journal of Geometry, 6(1), 89-99.
AMA
Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. April 2013;6(1):89-99.
Chicago
Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 89-99.
EndNote
Gündüzalp Y (April 1, 2013) RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. International Electronic Journal of Geometry 6 1 89–99.
IEEE
Y. Gündüzalp, “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 89–99, 2013.
ISNAD
Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry 6/1 (April 2013), 89-99.
JAMA
Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. 2013;6:89–99.
MLA
Gündüzalp, Yilmaz. “RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 89-99.
Vancouver
Gündüzalp Y. RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS. Int. Electron. J. Geom. 2013;6(1):89-9.