[1] Callahan, J. J., Geometry of Spacetime: An Introduction to Special and General Relativity,
Springer-Verlag, New York, 2000.
[2] Chen, B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973.
[3] Chen, B.-Y., An invariant of conformal mappings, Proc. Amer. Math. Soc., 40(1973), pp.
563–564.
[4] Chen, B.-Y., Some conformal invariants of submanifolds and their applications, Boll. Un.
Mat. Ital., 10(1974), 380–385.
[5] Chen, B.-Y., Classification of totally umbilical submanifolds in symmetric spaces, J. Austral.
Math. Soc. (Series A), 30(1980), 129–136.
[6] Chen, B.-Y., Total mean curvature and submanifolds of finite type, World Scientific, New
Jersey, 1984.
[7] Chen, B.-Y., Complete classification of spatial surfaces with parallel mean curvature vector in
arbitrary non-flat pseudo-Riemannian space forms, Central European J. Math., 7(2009), No.3, pp.
400–428.
[8] Chen, B.-Y., Pseudo-Riemannian sumbanifolds, δ-invariants and Applications, World Scien- tific,
2011.
[9] Chen, B.-Y. and Garay, O. J. , Complete classification of quasi-minimal surfaces with parallel
mean curvature vector in neutral pseudo-Euclidean 4-space E4, Result. Math., 55(2009),23–38.
[10] Delaunay, C., Sur la surface de r´evolution dont la courbure moyenne est constante, J. Math.
Pure Appl., 6(1841), 309–320.
[11] Dursun, U., Rotation hypersurfaces in Lorentz-Minkowski space with constant mean curva- ture,
Taiwanese J. of Math., 14(2010), No.2, pp. 685–705.
[12] Dursun, U., Turgay, N. C., Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space
E4 Mediterr. J. Math. 10 (2013), no. 1, 497–506.
[13] Ho, P. T., Remarks on De Sitter Spacetime: Geometry in the Theory of Relativity, Di- mensions,
The Journal of Undergraduate Research in Natural Sciences and Mathematics, California State
University, Fullerton, 13(2011), pp. 71– 81.
[14] Mirsky, L., The spread of a matrix, Mathematika, 3(1956), pp. 127–130.
[15] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, San
Diego, 1983.
[16] Spivak, M., A Comprehensive Introduction to Differential Geometry, volume IV, Third edi- tion,
Publish or Perish, 1999.
[17] Suceav˘a, B. D., The spread of the shape operator as conformal invariant, J. Inequal. Pure
Appl. Math. 4 (2003), no. 4, Article 74, 8 pp.
Year 2013,
Volume: 6 Issue: 1, 151 - 158, 30.04.2013
[1] Callahan, J. J., Geometry of Spacetime: An Introduction to Special and General Relativity,
Springer-Verlag, New York, 2000.
[2] Chen, B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973.
[3] Chen, B.-Y., An invariant of conformal mappings, Proc. Amer. Math. Soc., 40(1973), pp.
563–564.
[4] Chen, B.-Y., Some conformal invariants of submanifolds and their applications, Boll. Un.
Mat. Ital., 10(1974), 380–385.
[5] Chen, B.-Y., Classification of totally umbilical submanifolds in symmetric spaces, J. Austral.
Math. Soc. (Series A), 30(1980), 129–136.
[6] Chen, B.-Y., Total mean curvature and submanifolds of finite type, World Scientific, New
Jersey, 1984.
[7] Chen, B.-Y., Complete classification of spatial surfaces with parallel mean curvature vector in
arbitrary non-flat pseudo-Riemannian space forms, Central European J. Math., 7(2009), No.3, pp.
400–428.
[8] Chen, B.-Y., Pseudo-Riemannian sumbanifolds, δ-invariants and Applications, World Scien- tific,
2011.
[9] Chen, B.-Y. and Garay, O. J. , Complete classification of quasi-minimal surfaces with parallel
mean curvature vector in neutral pseudo-Euclidean 4-space E4, Result. Math., 55(2009),23–38.
[10] Delaunay, C., Sur la surface de r´evolution dont la courbure moyenne est constante, J. Math.
Pure Appl., 6(1841), 309–320.
[11] Dursun, U., Rotation hypersurfaces in Lorentz-Minkowski space with constant mean curva- ture,
Taiwanese J. of Math., 14(2010), No.2, pp. 685–705.
[12] Dursun, U., Turgay, N. C., Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space
E4 Mediterr. J. Math. 10 (2013), no. 1, 497–506.
[13] Ho, P. T., Remarks on De Sitter Spacetime: Geometry in the Theory of Relativity, Di- mensions,
The Journal of Undergraduate Research in Natural Sciences and Mathematics, California State
University, Fullerton, 13(2011), pp. 71– 81.
[14] Mirsky, L., The spread of a matrix, Mathematika, 3(1956), pp. 127–130.
[15] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, San
Diego, 1983.
[16] Spivak, M., A Comprehensive Introduction to Differential Geometry, volume IV, Third edi- tion,
Publish or Perish, 1999.
[17] Suceav˘a, B. D., The spread of the shape operator as conformal invariant, J. Inequal. Pure
Appl. Math. 4 (2003), no. 4, Article 74, 8 pp.
Ho, P. T., & Sucuevă, B. D. (2013). INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry, 6(1), 151-158.
AMA
Ho PT, Sucuevă BD. INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. April 2013;6(1):151-158.
Chicago
Ho, Peter T., and Bogdan D. Sucuevă. “INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 151-58.
EndNote
Ho PT, Sucuevă BD (April 1, 2013) INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry 6 1 151–158.
IEEE
P. T. Ho and B. D. Sucuevă, “INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 151–158, 2013.
ISNAD
Ho, Peter T. - Sucuevă, Bogdan D. “INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 6/1 (April 2013), 151-158.
JAMA
Ho PT, Sucuevă BD. INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2013;6:151–158.
MLA
Ho, Peter T. and Bogdan D. Sucuevă. “INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 151-8.
Vancouver
Ho PT, Sucuevă BD. INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED BY THE UMBILICITY CONDITION FOR ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2013;6(1):151-8.