[4] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, 509,
Springer-Verlag Berlin, 1976.
[5] Cabrerizo, J.L., Fernandez, M., Fernandez, L.M. and Zhen, G. : On ξ-conformaly flat K- contact
manifolds, Indian J. Pure and Applied Math., 28(1997), 725-734.
[6] Chaubey, S.K. and Ojha, R.H., On a semi-symmetric non-metric connection, Filomat 25:4 (2011),
19-27.
[7] Chaubey, S.K. and Ojha, R.H., On a semi-symmetric non-metric connection, Filmot 26:2
(2012), 63-69.
[8] De, U.C. and Biswas, S.C., On a type of semi-symmetric metric connection on a Riemannian
manifold, Pub. De L Institut Math., N.S., Tome 61(75), 1997, 90-96.
[9] De, U.C. and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Applied
Math., 35 (2004), 159-165.
[10] Friedmann, A. and Schouten, J.A., U¨ ber die Geometric der halbsymmetrischen U¨ bertragung,
Math., Zeitschr., 21(1924), 211-223.
[11] Hayden, H.A., Subspaces of space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
[12] Ianus, S. and Smaranda, D., Some remarkable structures on the product of an almost contact
metric manifold with the real line, Papers from the National Coll. on Geometry and Topology, Univ.
Timisoara, (1997),107-110.
[13] Jun, J.B. , De, U.C. and Pathak, G., On Kenmotsu manifolds, J. Korean Math. Soc.,
42(2005), 435-445.
[14] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972),
93-103.
[15] Oubina, A., New classes of contact metric structures, Publ. Math. Debrecen,
32(3- 4)(1985),187-193.
[16] O¨zgu¨r, C. and De, U.C., On the quasi-conformal curvature tensor of a Kenmotsu manifold,
Mathematica Pannonica, 17/2, (2006), 221-228.
[17] Prvanovic´, M., On pseudo metric semi-symmetric connections, Pub. De L Institut
Math., Nouvelle serie, 18 (32), 1975, 157-164.
[18] Sharfuddin, A. and Hussain, S.I., Semi-symmetric metric connexions in almost contact man-
ifolds, Tensor, N.S., 30(1976), 133-139.
[19] Tanno, S., The automorphism groups of almost contact Riemannian manifolds, Tohoku Math.
j., 21(1969), 21-38.
[20] Yano, K., On semi-symmetric connection, Revue Roumaine de Math. Pure et Appliques, 15(1970),
1570-1586.
[21] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics studies,
32(Princeton university press) (1953).
[22] Yıldiz, A., De, U.C. and Acet, B.E., On Kenmotsu manifolds satisfying certain curvature
conditions, SUT J. of Math. 45, 2(2009), 89-101.
[23] Yılmaz, H.B., On weakly symmetric manifolds with a type of semi-symmetric non-metric
connection, Annales Polonici Mathematici 102.3 (2011).
[24] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7(1992), 5-10.
[25] Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M., The structure of a class of
K-contact manifolds, Acta Math. Hungar, 82(4)(1999), 331-340.
[26] Zengin F. O., Uysal S. A. and Demirbag S. A., On sectional curvature of a Riemannian
manifold with semi-symmetric metric connection, Ann. Polon. Math. 101(2011), 131-138.
Year 2013,
Volume: 6 Issue: 1, 159 - 169, 30.04.2013
[4] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, 509,
Springer-Verlag Berlin, 1976.
[5] Cabrerizo, J.L., Fernandez, M., Fernandez, L.M. and Zhen, G. : On ξ-conformaly flat K- contact
manifolds, Indian J. Pure and Applied Math., 28(1997), 725-734.
[6] Chaubey, S.K. and Ojha, R.H., On a semi-symmetric non-metric connection, Filomat 25:4 (2011),
19-27.
[7] Chaubey, S.K. and Ojha, R.H., On a semi-symmetric non-metric connection, Filmot 26:2
(2012), 63-69.
[8] De, U.C. and Biswas, S.C., On a type of semi-symmetric metric connection on a Riemannian
manifold, Pub. De L Institut Math., N.S., Tome 61(75), 1997, 90-96.
[9] De, U.C. and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Applied
Math., 35 (2004), 159-165.
[10] Friedmann, A. and Schouten, J.A., U¨ ber die Geometric der halbsymmetrischen U¨ bertragung,
Math., Zeitschr., 21(1924), 211-223.
[11] Hayden, H.A., Subspaces of space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
[12] Ianus, S. and Smaranda, D., Some remarkable structures on the product of an almost contact
metric manifold with the real line, Papers from the National Coll. on Geometry and Topology, Univ.
Timisoara, (1997),107-110.
[13] Jun, J.B. , De, U.C. and Pathak, G., On Kenmotsu manifolds, J. Korean Math. Soc.,
42(2005), 435-445.
[14] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972),
93-103.
[15] Oubina, A., New classes of contact metric structures, Publ. Math. Debrecen,
32(3- 4)(1985),187-193.
[16] O¨zgu¨r, C. and De, U.C., On the quasi-conformal curvature tensor of a Kenmotsu manifold,
Mathematica Pannonica, 17/2, (2006), 221-228.
[17] Prvanovic´, M., On pseudo metric semi-symmetric connections, Pub. De L Institut
Math., Nouvelle serie, 18 (32), 1975, 157-164.
[18] Sharfuddin, A. and Hussain, S.I., Semi-symmetric metric connexions in almost contact man-
ifolds, Tensor, N.S., 30(1976), 133-139.
[19] Tanno, S., The automorphism groups of almost contact Riemannian manifolds, Tohoku Math.
j., 21(1969), 21-38.
[20] Yano, K., On semi-symmetric connection, Revue Roumaine de Math. Pure et Appliques, 15(1970),
1570-1586.
[21] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics studies,
32(Princeton university press) (1953).
[22] Yıldiz, A., De, U.C. and Acet, B.E., On Kenmotsu manifolds satisfying certain curvature
conditions, SUT J. of Math. 45, 2(2009), 89-101.
[23] Yılmaz, H.B., On weakly symmetric manifolds with a type of semi-symmetric non-metric
connection, Annales Polonici Mathematici 102.3 (2011).
[24] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7(1992), 5-10.
[25] Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M., The structure of a class of
K-contact manifolds, Acta Math. Hungar, 82(4)(1999), 331-340.
[26] Zengin F. O., Uysal S. A. and Demirbag S. A., On sectional curvature of a Riemannian
manifold with semi-symmetric metric connection, Ann. Polon. Math. 101(2011), 131-138.
Barman, A., & De, U. C. (2013). PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD. International Electronic Journal of Geometry, 6(1), 159-169.
AMA
Barman A, De UC. PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD. Int. Electron. J. Geom. April 2013;6(1):159-169.
Chicago
Barman, Ajit, and U. C. De. “PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 159-69.
EndNote
Barman A, De UC (April 1, 2013) PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD. International Electronic Journal of Geometry 6 1 159–169.
IEEE
A. Barman and U. C. De, “PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 159–169, 2013.
ISNAD
Barman, Ajit - De, U. C. “PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD”. International Electronic Journal of Geometry 6/1 (April 2013), 159-169.
JAMA
Barman A, De UC. PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD. Int. Electron. J. Geom. 2013;6:159–169.
MLA
Barman, Ajit and U. C. De. “PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 159-6.
Vancouver
Barman A, De UC. PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD. Int. Electron. J. Geom. 2013;6(1):159-6.