[1] Birman, G. S. and Nomizu, K., Trigonometry in Lorentzian geometry. Amer. Math. Monthly
91 (1984), no. 9, 543–549.
[2] Catoni, F., Cannata R., Catoni, V. and Zampetti, P., Hyperbolic trigonometry in two-
dimensional space-time geometry. Nuovo Cimento Soc. Ital. Fis. B 118 (2003), no. 5, 475– 492.
[3] Catoni, F., Cannata R., Catoni, V. and Zampetti, P., Two-dimensional hypercomplex num- bers and
related trigonometries and geometries Adv. Appl. Clifford Algebr. 14 (2004), no. 1, 47–68.
[4] Ergin, A. A., On the 1-parameter Lorentzian motions, Comm. Fac. Sci. Univ. Ankara Ser.
A1 Math. Statist. 40 (1991), 59–66.
[5] Einstein, A., Zur Elektrodynamik bewegter K¨orper, Annalen der Physik 322, (1905) Issue 10,
895–921.
[6] Fjelstad, P. and Gal, S. G., Two-dimensional geometries, topologies, trigonometries and
physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11 (2001), no. 1, 81–107
[7] Gündoğan, H. and Kçilioğlu, O., Lorentzian matrix multiplication and the motions on
Lorentzian plane. Glas. Mat. Ser. III 41(61) (2006), no. 2, 329–334.
[8] Harkin, A. A. and Harkin, J. B., Geometry of Generalized Complex Numbers. Math. Mag.
77 (2004), no. 2, 118–129.
[9] Lie, S. and Scheffers, M. G., Vorlesungen u¨ber continuierliche Gruppen, Kap. 21, Teubner,
Leipzig, 1893
[10] McCarthy, J. M., Geometric design of linkages. Interdisciplinary Applied Mathematics, 11
Springer-Verlag, New York, 2000.
[11] McCarthy, J. M., An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990. [12]
Myrvold, W.C. and Christian, J., Quantum Reality, Relativistic Causality and closing the
epistemic circle, Springer Science+Business Media, 2009.
[13] O’Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, Inc.,
New York, 1983.
[14] Nesŏvić, E. and Petrović-Torgašev, M., Some trigonometric relations in the Lorentzian
plane. Kragujevac J. Math. 25 (2003), 219–225.
[15] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.
[16] Yaglom, I. M., A simple non-Euclidean geometry and its physical basis. An elementary ac-
count of Galilean geometry and the Galilean principle of relativity. Springer-Verlag,
New York-Heidelberg, 1979
[17] Yüce, S. and Kuruğlu, N., One-parameter plane hyperbolic motions. Adv. Appl. Clifford
Algebr. 18 (2008), no. 2, 279–285.
[1] Birman, G. S. and Nomizu, K., Trigonometry in Lorentzian geometry. Amer. Math. Monthly
91 (1984), no. 9, 543–549.
[2] Catoni, F., Cannata R., Catoni, V. and Zampetti, P., Hyperbolic trigonometry in two-
dimensional space-time geometry. Nuovo Cimento Soc. Ital. Fis. B 118 (2003), no. 5, 475– 492.
[3] Catoni, F., Cannata R., Catoni, V. and Zampetti, P., Two-dimensional hypercomplex num- bers and
related trigonometries and geometries Adv. Appl. Clifford Algebr. 14 (2004), no. 1, 47–68.
[4] Ergin, A. A., On the 1-parameter Lorentzian motions, Comm. Fac. Sci. Univ. Ankara Ser.
A1 Math. Statist. 40 (1991), 59–66.
[5] Einstein, A., Zur Elektrodynamik bewegter K¨orper, Annalen der Physik 322, (1905) Issue 10,
895–921.
[6] Fjelstad, P. and Gal, S. G., Two-dimensional geometries, topologies, trigonometries and
physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11 (2001), no. 1, 81–107
[7] Gündoğan, H. and Kçilioğlu, O., Lorentzian matrix multiplication and the motions on
Lorentzian plane. Glas. Mat. Ser. III 41(61) (2006), no. 2, 329–334.
[8] Harkin, A. A. and Harkin, J. B., Geometry of Generalized Complex Numbers. Math. Mag.
77 (2004), no. 2, 118–129.
[9] Lie, S. and Scheffers, M. G., Vorlesungen u¨ber continuierliche Gruppen, Kap. 21, Teubner,
Leipzig, 1893
[10] McCarthy, J. M., Geometric design of linkages. Interdisciplinary Applied Mathematics, 11
Springer-Verlag, New York, 2000.
[11] McCarthy, J. M., An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990. [12]
Myrvold, W.C. and Christian, J., Quantum Reality, Relativistic Causality and closing the
epistemic circle, Springer Science+Business Media, 2009.
[13] O’Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, Inc.,
New York, 1983.
[14] Nesŏvić, E. and Petrović-Torgašev, M., Some trigonometric relations in the Lorentzian
plane. Kragujevac J. Math. 25 (2003), 219–225.
[15] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.
[16] Yaglom, I. M., A simple non-Euclidean geometry and its physical basis. An elementary ac-
count of Galilean geometry and the Galilean principle of relativity. Springer-Verlag,
New York-Heidelberg, 1979
[17] Yüce, S. and Kuruğlu, N., One-parameter plane hyperbolic motions. Adv. Appl. Clifford
Algebr. 18 (2008), no. 2, 279–285.